15,983 research outputs found

    Maximum Entropy Production Principle for Stock Returns

    Full text link
    In our previous studies we have investigated the structural complexity of time series describing stock returns on New York's and Warsaw's stock exchanges, by employing two estimators of Shannon's entropy rate based on Lempel-Ziv and Context Tree Weighting algorithms, which were originally used for data compression. Such structural complexity of the time series describing logarithmic stock returns can be used as a measure of the inherent (model-free) predictability of the underlying price formation processes, testing the Efficient-Market Hypothesis in practice. We have also correlated the estimated predictability with the profitability of standard trading algorithms, and found that these do not use the structure inherent in the stock returns to any significant degree. To find a way to use the structural complexity of the stock returns for the purpose of predictions we propose the Maximum Entropy Production Principle as applied to stock returns, and test it on the two mentioned markets, inquiring into whether it is possible to enhance prediction of stock returns based on the structural complexity of these and the mentioned principle.Comment: 14 pages, 5 figure

    An interacting-agent model of financial markets from the viewpoint of nonextensive statistical mechanics

    Full text link
    In this paper we present an interacting-agent model of stock markets. We describe a stock market through an Ising-like model in order to formulate the tendency of traders getting to be influenced by the other traders' investment attitudes [1], and formulate the traders' decision-making regarding investment as the maximum entropy principle for nonextensive entropy. We demonstrate that the equilibrium probability distribution function of the traders' investment attitude is the {\it q-exponential distribution}. We also show that the power-law distribution of the volatility of price fluctuations, which is often demonstrated in empirical studies, can be explained naturally by our model which is based on the collective crowd behavior of many interacting agents.Comment: 7 pages, forthcoming into Physica A (2006

    Information measure for financial time series: quantifying short-term market heterogeneity

    Get PDF
    A well-interpretable measure of information has been recently proposed based on a partition obtained by intersecting a random sequence with its moving average. The partition yields disjoint sets of the sequence, which are then ranked according to their size to form a probability distribution function and finally fed in the expression of the Shannon entropy. In this work, such entropy measure is implemented on the time series of prices and volatilities of six financial markets. The analysis has been performed, on tick-by-tick data sampled every minute for six years of data from 1999 to 2004, for a broad range of moving average windows and volatility horizons. The study shows that the entropy of the volatility series depends on the individual market, while the entropy of the price series is practically a market-invariant for the six markets. Finally, a cumulative information measure - the `Market Heterogeneity Index'- is derived from the integral of the proposed entropy measure. The values of the Market Heterogeneity Index are discussed as possible tools for optimal portfolio construction and compared with those obtained by using the Sharpe ratio a traditional risk diversity measure

    Predicting stock market movements using network science: An information theoretic approach

    Full text link
    A stock market is considered as one of the highly complex systems, which consists of many components whose prices move up and down without having a clear pattern. The complex nature of a stock market challenges us on making a reliable prediction of its future movements. In this paper, we aim at building a new method to forecast the future movements of Standard & Poor's 500 Index (S&P 500) by constructing time-series complex networks of S&P 500 underlying companies by connecting them with links whose weights are given by the mutual information of 60-minute price movements of the pairs of the companies with the consecutive 5,340 minutes price records. We showed that the changes in the strength distributions of the networks provide an important information on the network's future movements. We built several metrics using the strength distributions and network measurements such as centrality, and we combined the best two predictors by performing a linear combination. We found that the combined predictor and the changes in S&P 500 show a quadratic relationship, and it allows us to predict the amplitude of the one step future change in S&P 500. The result showed significant fluctuations in S&P 500 Index when the combined predictor was high. In terms of making the actual index predictions, we built ARIMA models. We found that adding the network measurements into the ARIMA models improves the model accuracy. These findings are useful for financial market policy makers as an indicator based on which they can interfere with the markets before the markets make a drastic change, and for quantitative investors to improve their forecasting models.Comment: 13 pages, 7 figures, 3 table
    • …
    corecore