252 research outputs found

    Parameterized Approximation Algorithms for Bidirected Steiner Network Problems

    Get PDF
    The Directed Steiner Network (DSN) problem takes as input a directed edge-weighted graph G=(V,E)G=(V,E) and a set D⊆V×V\mathcal{D}\subseteq V\times V of kk demand pairs. The aim is to compute the cheapest network N⊆GN\subseteq G for which there is an s→ts\to t path for each (s,t)∈D(s,t)\in\mathcal{D}. It is known that this problem is notoriously hard as there is no k1/4−o(1)k^{1/4-o(1)}-approximation algorithm under Gap-ETH, even when parametrizing the runtime by kk [Dinur & Manurangsi, ITCS 2018]. In light of this, we systematically study several special cases of DSN and determine their parameterized approximability for the parameter kk. For the bi-DSNPlanar_\text{Planar} problem, the aim is to compute a planar optimum solution N⊆GN\subseteq G in a bidirected graph GG, i.e., for every edge uvuv of GG the reverse edge vuvu exists and has the same weight. This problem is a generalization of several well-studied special cases. Our main result is that this problem admits a parameterized approximation scheme (PAS) for kk. We also prove that our result is tight in the sense that (a) the runtime of our PAS cannot be significantly improved, and (b) it is unlikely that a PAS exists for any generalization of bi-DSNPlanar_\text{Planar}, unless FPT=W[1]. One important special case of DSN is the Strongly Connected Steiner Subgraph (SCSS) problem, for which the solution network N⊆GN\subseteq G needs to strongly connect a given set of kk terminals. It has been observed before that for SCSS a parameterized 22-approximation exists when parameterized by kk [Chitnis et al., IPEC 2013]. We give a tight inapproximability result by showing that for kk no parameterized (2−ε)(2-\varepsilon)-approximation algorithm exists under Gap-ETH. Additionally we show that when restricting the input of SCSS to bidirected graphs, the problem remains NP-hard but becomes FPT for kk

    Forbidden Directed Minors and Kelly-width

    Full text link
    Partial 1-trees are undirected graphs of treewidth at most one. Similarly, partial 1-DAGs are directed graphs of KellyWidth at most two. It is well-known that an undirected graph is a partial 1-tree if and only if it has no K_3 minor. In this paper, we generalize this characterization to partial 1-DAGs. We show that partial 1-DAGs are characterized by three forbidden directed minors, K_3, N_4 and M_5

    Flows on Bidirected Graphs

    Full text link
    The study of nowhere-zero flows began with a key observation of Tutte that in planar graphs, nowhere-zero k-flows are dual to k-colourings (in the form of k-tensions). Tutte conjectured that every graph without a cut-edge has a nowhere-zero 5-flow. Seymour proved that every such graph has a nowhere-zero 6-flow. For a graph embedded in an orientable surface of higher genus, flows are not dual to colourings, but to local-tensions. By Seymour's theorem, every graph on an orientable surface without the obvious obstruction has a nowhere-zero 6-local-tension. Bouchet conjectured that the same should hold true on non-orientable surfaces. Equivalently, Bouchet conjectured that every bidirected graph with a nowhere-zero Z\mathbb{Z}-flow has a nowhere-zero 6-flow. Our main result establishes that every such graph has a nowhere-zero 12-flow.Comment: 24 pages, 2 figure

    Directed Ramsey number for trees

    Get PDF
    In this paper, we study Ramsey-type problems for directed graphs. We first consider the kk-colour oriented Ramsey number of HH, denoted by R→(H,k)\overrightarrow{R}(H,k), which is the least nn for which every kk-edge-coloured tournament on nn vertices contains a monochromatic copy of HH. We prove that R→(T,k)≤ck∣T∣k \overrightarrow{R}(T,k) \le c_k|T|^k for any oriented tree TT. This is a generalisation of a similar result for directed paths by Chv\'atal and by Gy\'arf\'as and Lehel, and answers a question of Yuster. In general, it is tight up to a constant factor. We also consider the kk-colour directed Ramsey number R↔(H,k)\overleftrightarrow{R}(H,k) of HH, which is defined as above, but, instead of colouring tournaments, we colour the complete directed graph of order nn. Here we show that R↔(T,k)≤ck∣T∣k−1 \overleftrightarrow{R}(T,k) \le c_k|T|^{k-1} for any oriented tree TT, which is again tight up to a constant factor, and it generalises a result by Williamson and by Gy\'arf\'as and Lehel who determined the 22-colour directed Ramsey number of directed paths.Comment: 27 pages, 14 figure

    New Exact and Approximation Algorithms for the Star Packing Problem in Undirected Graphs

    Get PDF
    By a T-star we mean a complete bipartite graph K_{1,t} for some t <= T. For an undirected graph G, a T-star packing is a collection of node-disjoint T-stars in G. For example, we get ordinary matchings for T=1T = 1 and packings of paths of length 1 and 2 for T=2T = 2. Hereinafter we assume that T >= 2. Hell and Kirkpatrick devised an ad-hoc augmenting algorithm that finds a T-star packing covering the maximum number of nodes. The latter algorithm also yields a min-max formula. We show that T-star packings are reducible to network flows, hence the above problem is solvable in O(msqrt(n))O(m sqrt(n)) time (hereinafter n denotes the number of nodes in G, and m --- the number of edges). For the edge-weighted case (in which weights may be assumed positive) finding a maximum TT-packing is NP-hard. A novel 9/4 T/(T + 1)-factor approximation algorithm is presented. For non-negative node weights the problem reduces to a special case of a max-cost flow. We develop a divide-and-conquer approach that solves it in O(m sqrt(n) log(n)) time. The node-weighted problem with arbitrary weights is more difficult. We prove that it is NP-hard for T >= 3 and is solvable in strongly-polynomial time for T = 2
    • …
    corecore