103 research outputs found

    Entropy of random coverings and 4D quantum gravity

    Full text link
    We discuss the counting of minimal geodesic ball coverings of nn-dimensional riemannian manifolds of bounded geometry, fixed Euler characteristic and Reidemeister torsion in a given representation of the fundamental group. This counting bears relevance to the analysis of the continuum limit of discrete models of quantum gravity. We establish the conditions under which the number of coverings grows exponentially with the volume, thus allowing for the search of a continuum limit of the corresponding discretized models. The resulting entropy estimates depend on representations of the fundamental group of the manifold through the corresponding Reidemeister torsion. We discuss the sum over inequivalent representations both in the two-dimensional and in the four-dimensional case. Explicit entropy functions as well as significant bounds on the associated critical exponents are obtained in both cases.Comment: 54 pages, latex, no figure

    A proof of the orbit conjecture for flipping edge-labelled triangulations

    Get PDF
    Given a triangulation of a point set in the plane, a flip deletes an edge e whose removal leaves a convex quadrilateral, and replaces e by the opposite diagonal of the quadrilateral. It is well known that any triangulation of a point set can be reconfigured to any other triangulation by some sequence of flips. We explore this question in the setting where each edge of a triangulation has a label, and a flip transfers the label of the removed edge to the new edge. It is not true that every labelled triangulation of a point set can be reconfigured to every other labelled triangulation via a sequence of flips, but we characterize when this is possible. There is an obvious necessary condition: for each label l, if edge e has label l in the first triangulation and edge f has label l in the second triangulation, then there must be some sequence of flips that moves label l from e to f, ignoring all other labels. Bose, Lubiw, Pathak and Verdonschot formulated the Orbit Conjecture, which states that this necessary condition is also sufficient, i.e. that all labels can be simultaneously mapped to their destination if and only if each label individually can be mapped to its destination. We prove this conjecture. Furthermore, we give a polynomial-time algorithm (with (8) being a crude bound on the run-time) to find a sequence of flips to reconfigure one labelled triangulation to another, if such a sequence exists, and we prove an upper bound of (7) on the length of the flip sequence. Our proof uses the topological result that the sets of pairwise non-crossing edges on a planar point set form a simplicial complex that is homeomorphic to a high-dimensional ball (this follows from a result of Orden and Santos; we give a different proof based on a shelling argument). The dual cell complex of this simplicial ball, called the flip complex, has the usual flip graph as its 1-skeleton. We use properties of the 2-skeleton of the flip complex to prove the Orbit Conjecture

    Algorithms for computing normally hyperbolic invariant manifolds

    Get PDF
    An effcient algorithm is developed for the numerical computation of normally hyperbolic invariant manifolds, based on the graph transform and Newton's method. It fits in the perturbation theory of discrete dynamical systems and therefore allows application to the setting of continuation. A convergence proof is included. The scope of application is not restricted to hyperbolic attractors, but extends to normally hyperbolic manifolds of saddle type. It also computes stable and unstable manifolds. The method is robust and needs only little specification of the dynamics, which makes it applicable to e.g. Poincaré maps. Its performance is illustrated on examples in 2D and 3D, where a numerical discussion is included.
    corecore