7,045 research outputs found

    The matching polytope does not admit fully-polynomial size relaxation schemes

    Full text link
    The groundbreaking work of Rothvo{\ss} [arxiv:1311.2369] established that every linear program expressing the matching polytope has an exponential number of inequalities (formally, the matching polytope has exponential extension complexity). We generalize this result by deriving strong bounds on the polyhedral inapproximability of the matching polytope: for fixed 0<ε<10 < \varepsilon < 1, every polyhedral (1+ε/n)(1 + \varepsilon / n)-approximation requires an exponential number of inequalities, where nn is the number of vertices. This is sharp given the well-known ρ\rho-approximation of size O((nρ/(ρ1)))O(\binom{n}{\rho/(\rho-1)}) provided by the odd-sets of size up to ρ/(ρ1)\rho/(\rho-1). Thus matching is the first problem in PP, whose natural linear encoding does not admit a fully polynomial-size relaxation scheme (the polyhedral equivalent of an FPTAS), which provides a sharp separation from the polynomial-size relaxation scheme obtained e.g., via constant-sized odd-sets mentioned above. Our approach reuses ideas from Rothvo{\ss} [arxiv:1311.2369], however the main lower bounding technique is different. While the original proof is based on the hyperplane separation bound (also called the rectangle corruption bound), we employ the information-theoretic notion of common information as introduced in Braun and Pokutta [http://eccc.hpi-web.de/report/2013/056/], which allows to analyze perturbations of slack matrices. It turns out that the high extension complexity for the matching polytope stem from the same source of hardness as for the correlation polytope: a direct sum structure.Comment: 21 pages, 3 figure

    "Almost-stable" matchings in the Hospitals / Residents problem with Couples

    Get PDF
    The Hospitals / Residents problem with Couples (hrc) models the allocation of intending junior doctors to hospitals where couples are allowed to submit joint preference lists over pairs of (typically geographically close) hospitals. It is known that a stable matching need not exist, so we consider min bp hrc, the problem of finding a matching that admits the minimum number of blocking pairs (i.e., is “as stable as possible”). We show that this problem is NP-hard and difficult to approximate even in the highly restricted case that each couple finds only one hospital pair acceptable. However if we further assume that the preference list of each single resident and hospital is of length at most 2, we give a polynomial-time algorithm for this case. We then present the first Integer Programming (IP) and Constraint Programming (CP) models for min bp hrc. Finally, we discuss an empirical evaluation of these models applied to randomly-generated instances of min bp hrc. We find that on average, the CP model is about 1.15 times faster than the IP model, and when presolving is applied to the CP model, it is on average 8.14 times faster. We further observe that the number of blocking pairs admitted by a solution is very small, i.e., usually at most 1, and never more than 2, for the (28,000) instances considered

    Graph Balancing with Orientation Costs

    Get PDF

    Minimizing the stabbing number of matchings, trees, and triangulations

    Full text link
    The (axis-parallel) stabbing number of a given set of line segments is the maximum number of segments that can be intersected by any one (axis-parallel) line. This paper deals with finding perfect matchings, spanning trees, or triangulations of minimum stabbing number for a given set of points. The complexity of these problems has been a long-standing open question; in fact, it is one of the original 30 outstanding open problems in computational geometry on the list by Demaine, Mitchell, and O'Rourke. The answer we provide is negative for a number of minimum stabbing problems by showing them NP-hard by means of a general proof technique. It implies non-trivial lower bounds on the approximability. On the positive side we propose a cut-based integer programming formulation for minimizing the stabbing number of matchings and spanning trees. We obtain lower bounds (in polynomial time) from the corresponding linear programming relaxations, and show that an optimal fractional solution always contains an edge of at least constant weight. This result constitutes a crucial step towards a constant-factor approximation via an iterated rounding scheme. In computational experiments we demonstrate that our approach allows for actually solving problems with up to several hundred points optimally or near-optimally.Comment: 25 pages, 12 figures, Latex. To appear in "Discrete and Computational Geometry". Previous version (extended abstract) appears in SODA 2004, pp. 430-43
    corecore