752 research outputs found

    Introducing Cloud Computing Topics in Curricula

    Get PDF
    The demand for graduates with exposure in Cloud Computing is on the rise. For many educational institutions, the challenge is to decide on how to incorporate appropriate cloud-based technologies into their curricula. In this paper, we describe our design and experiences of integrating Cloud Computing components into seven third/fourth-year undergraduate-level information system, computer science, and general science courses that are related to large-scale data processing and analysis at the University of Queensland, Australia. For each course, we aimed at finding the best-available and cost-effective cloud technologies that fit well in the existing curriculum. The cloud related technologies discussed in this paper include open-source distributed computing tools such as Hadoop, Mahout, and Hive, as well as cloud services such as Windows Azure and Amazon Elastic Computing Cloud (EC2). We anticipate that our experiences will prove useful and of interest to fellow academics wanting to introduce Cloud Computing modules to existing courses

    An Artificial Immune System Strategy for Robust Chemical Spectra Classification via Distributed Heterogeneous Sensors

    Get PDF
    The timely detection and classification of chemical and biological agents in a wartime environment is a critical component of force protection in hostile areas. Moreover, the possibility of toxic agent use in heavily populated civilian areas has risen dramatically in recent months. This thesis effort proposes a strategy for identifying such agents vis distributed sensors in an Artificial Immune System (AIS) network. The system may be used to complement electronic nose ( E-nose ) research being conducted in part by the Air Force Research Laboratory Sensors Directorate. In addition, the proposed strategy may facilitate fulfillment of a recent mandate by the President of the United States to the Office of Homeland Defense for the provision of a system that protects civilian populations from chemical and biological agents. The proposed system is composed of networked sensors and nodes, communicating via wireless or wired connections. Measurements are continually taken via dispersed, redundant, and heterogeneous sensors strategically placed in high threat areas. These sensors continually measure and classify air or liquid samples, alerting personnel when toxic agents are detected. Detection is based upon the Biological Immune System (BIS) model of antigens and antibodies, and alerts are generated when a measured sample is determined to be a valid toxic agent (antigen). Agent signatures (antibodies) are continually distributed throughout the system to adapt to changes in the environment or to new antigens. Antibody features are determined via data mining techniques in order to improve system performance and classification capabilities. Genetic algorithms (GAs) are critical part of the process, namely in antibody generation and feature subset selection calculations. Demonstrated results validate the utility of the proposed distributed AIS model for robust chemical spectra recognition

    Optimising large scale public transport network design problems using mixed-mode parallel multi-objective evolutionary algorithms

    Get PDF
    In this paper we present a novel tool, using both OpenMP and MPI protocols, for optimising the efficiency of Urban Transportation Systems within a defined catchment, town or city. We build on a previously presented model which uses a Genetic Algorithm with novel genetic operators to optimise route sets and provide a transport network for a given problem set. This model is then implemented within a Parallel Multi-Objective Genetic Algorithm and demonstrated to be scalable to within the scope of real world, [city-wide], problems. This paper compares and contrasts three methods of parallel distribution of the Genetic Algorithm's computational workload: a job farming algorithm and two variations on an ‘Islands’ approach. Results are presented in the paper from both single and mixed mode strategies. The results presented are from a range of previously published academic problem sets. Additionally a real world inspired problem set is evaluated and a visualisation of the optimised output is given

    Optimization of Heterogeneous UAV Communications Using the Multiobjective Quadratic Assignment Problem

    Get PDF
    The Air Force has placed a high priority on developing new and innovative ways to use Unmanned Aerial Vehicles (UAVs). The Defense Advanced Research Projects Agency (DARPA) currently funds many projects that deal with the advancement of UAV research. The ultimate goal of the Air Force is to use UAVs in operations that are highly dangerous to pilots, mainly the suppression of enemy air defenses (SEAD). With this goal in mind, formation structuring of autonomous or semi-autonomous UAVs is of future importance. This particular research investigates the optimization of heterogeneous UAV multi-channel communications in formation. The problem maps to the multiobjective Quadratic Assignment Problem (mQAP). Optimization of this problem is done through the use of a Multiobjective Evolutionary Algorithm (MOEA) called the Multiobjective Messy Genetic Algorithm - II (MOMGA-II). Experimentation validates the attainment of an acceptable Pareto Front for a variety of mQAP benchmarks. It was observed that building block size can affect the location vectors along the current Pareto Front. The competitive templates used during testing perform best when they are randomized before each building block size evaluation. This tuning of the MOMGA-II parameters creates a more effective algorithm for the variety of mQAP benchmarks, when compared to the initial experiments. Thus this algorithmic approach would be useful for Air Force decision makers in determining the placement of UAVs in formations

    Generative Grammar and the Faculty of Language : Insights, Questions, and Challenges

    Get PDF
    This paper provides an overview of what we take to be the key current issues in the field of Generative Grammar, the study of the human Faculty of Language. We discuss some of the insights this approach to language has produced, including substantial achievements in the understanding of basic properties of language and its interactions with interfacing systems. This progress in turn gives rise to new research questions, many of which could not even be coherently formulated until recently. We highlight some of the most pressing outstanding challenges, in the hope of inspiring future research.Aquest treball proporciona una visió general dels aspectes clau actuals en el camp de la gramàtica generativa: l'estudi de la facultat del llenguatge humà. Es tractaran algunes de les visions a què aquest enfocament del llenguatge ha donat lloc, incloent-hi èxits importants en la comprensió de les propietats bàsiques del llenguatge i les seves interaccions amb els sistemes d'interfície. Aquest progrés dona lloc a noves preguntes de recerca, moltes de les quals fins i tot no es podien formular de manera coherent fins fa poc. Destaquem alguns dels reptes més destacats amb l'esperança d'inspirar futures investigacions

    A multi-objective evolutionary approach to simulation-based optimisation of real-world problems.

    Get PDF
    This thesis presents a novel evolutionary optimisation algorithm that can improve the quality of solutions in simulation-based optimisation. Simulation-based optimisation is the process of finding optimal parameter settings without explicitly examining each possible configuration of settings. An optimisation algorithm generates potential configurations and sends these to the simulation, which acts as an evaluation function. The evaluation results are used to refine the optimisation such that it eventually returns a high-quality solution. The algorithm described in this thesis integrates multi-objective optimisation, parallelism, surrogate usage, and noise handling in a unique way for dealing with simulation-based optimisation problems incurred by these characteristics. In order to handle multiple, conflicting optimisation objectives, the algorithm uses a Pareto approach in which the set of best trade-off solutions is searched for and presented to the user. The algorithm supports a high degree of parallelism by adopting an asynchronous master-slave parallelisation model in combination with an incremental population refinement strategy. A surrogate evaluation function is adopted in the algorithm to quickly identify promising candidate solutions and filter out poor ones. A novel technique based on inheritance is used to compensate for the uncertainties associated with the approximative surrogate evaluations. Furthermore, a novel technique for multi-objective problems that effectively reduces noise by adopting a dynamic procedure in resampling solutions is used to tackle the problem of real-world unpredictability (noise). The proposed algorithm is evaluated on benchmark problems and two complex real-world problems of manufacturing optimisation. The first real-world problem concerns the optimisation of a production cell at Volvo Aero, while the second one concerns the optimisation of a camshaft machining line at Volvo Cars Engine. The results from the optimisations show that the algorithm finds better solutions for all the problems considered than existing, similar algorithms. The new techniques for dealing with surrogate imprecision and noise used in the algorithm are identified as key reasons for the good performance.University of Skövde Knowledge Foundation Swede

    Parallel and Distributed Computing

    Get PDF
    The 14 chapters presented in this book cover a wide variety of representative works ranging from hardware design to application development. Particularly, the topics that are addressed are programmable and reconfigurable devices and systems, dependability of GPUs (General Purpose Units), network topologies, cache coherence protocols, resource allocation, scheduling algorithms, peertopeer networks, largescale network simulation, and parallel routines and algorithms. In this way, the articles included in this book constitute an excellent reference for engineers and researchers who have particular interests in each of these topics in parallel and distributed computing
    corecore