17,095 research outputs found

    Extreme Quantum Advantage for Rare-Event Sampling

    Get PDF
    We introduce a quantum algorithm for efficient biased sampling of the rare events generated by classical memoryful stochastic processes. We show that this quantum algorithm gives an extreme advantage over known classical biased sampling algorithms in terms of the memory resources required. The quantum memory advantage ranges from polynomial to exponential and when sampling the rare equilibrium configurations of spin systems the quantum advantage diverges.Comment: 11 pages, 9 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/eqafbs.ht

    Strong memoryless times and rare events in Markov renewal point processes

    Full text link
    Let W be the number of points in (0,t] of a stationary finite-state Markov renewal point process. We derive a bound for the total variation distance between the distribution of W and a compound Poisson distribution. For any nonnegative random variable \zeta, we construct a ``strong memoryless time'' \hat \zeta such that \zeta-t is exponentially distributed conditional on {\hat \zeta\leq t, \zeta>t}, for each t. This is used to embed the Markov renewal point process into another such process whose state space contains a frequently observed state which represents loss of memory in the original process. We then write W as the accumulated reward of an embedded renewal reward process, and use a compound Poisson approximation error bound for this quantity by Erhardsson. For a renewal process, the bound depends in a simple way on the first two moments of the interrenewal time distribution, and on two constants obtained from the Radon-Nikodym derivative of the interrenewal time distribution with respect to an exponential distribution. For a Poisson process, the bound is 0.Comment: Published by the Institute of Mathematical Statistics (http://www.imstat.org) in the Annals of Probability (http://www.imstat.org/aop/) at http://dx.doi.org/10.1214/00911790400000005

    Variable length Markov chains and dynamical sources

    Full text link
    Infinite random sequences of letters can be viewed as stochastic chains or as strings produced by a source, in the sense of information theory. The relationship between Variable Length Markov Chains (VLMC) and probabilistic dynamical sources is studied. We establish a probabilistic frame for context trees and VLMC and we prove that any VLMC is a dynamical source for which we explicitly build the mapping. On two examples, the ``comb'' and the ``bamboo blossom'', we find a necessary and sufficient condition for the existence and the unicity of a stationary probability measure for the VLMC. These two examples are detailed in order to provide the associated Dirichlet series as well as the generating functions of word occurrences.Comment: 45 pages, 15 figure

    BioSimulator.jl: Stochastic simulation in Julia

    Full text link
    Biological systems with intertwined feedback loops pose a challenge to mathematical modeling efforts. Moreover, rare events, such as mutation and extinction, complicate system dynamics. Stochastic simulation algorithms are useful in generating time-evolution trajectories for these systems because they can adequately capture the influence of random fluctuations and quantify rare events. We present a simple and flexible package, BioSimulator.jl, for implementing the Gillespie algorithm, Ď„\tau-leaping, and related stochastic simulation algorithms. The objective of this work is to provide scientists across domains with fast, user-friendly simulation tools. We used the high-performance programming language Julia because of its emphasis on scientific computing. Our software package implements a suite of stochastic simulation algorithms based on Markov chain theory. We provide the ability to (a) diagram Petri Nets describing interactions, (b) plot average trajectories and attached standard deviations of each participating species over time, and (c) generate frequency distributions of each species at a specified time. BioSimulator.jl's interface allows users to build models programmatically within Julia. A model is then passed to the simulate routine to generate simulation data. The built-in tools allow one to visualize results and compute summary statistics. Our examples highlight the broad applicability of our software to systems of varying complexity from ecology, systems biology, chemistry, and genetics. The user-friendly nature of BioSimulator.jl encourages the use of stochastic simulation, minimizes tedious programming efforts, and reduces errors during model specification.Comment: 27 pages, 5 figures, 3 table

    Variance Reduction Techniques in Monte Carlo Methods

    Get PDF
    Monte Carlo methods are simulation algorithms to estimate a numerical quantity in a statistical model of a real system. These algorithms are executed by computer programs. Variance reduction techniques (VRT) are needed, even though computer speed has been increasing dramatically, ever since the introduction of computers. This increased computer power has stimulated simulation analysts to develop ever more realistic models, so that the net result has not been faster execution of simulation experiments; e.g., some modern simulation models need hours or days for a single ’run’ (one replication of one scenario or combination of simulation input values). Moreover there are some simulation models that represent rare events which have extremely small probabilities of occurrence), so even modern computer would take ’for ever’ (centuries) to execute a single run - were it not that special VRT can reduce theses excessively long runtimes to practical magnitudes.common random numbers;antithetic random numbers;importance sampling;control variates;conditioning;stratied sampling;splitting;quasi Monte Carlo

    On the Performance of Short Block Codes over Finite-State Channels in the Rare-Transition Regime

    Full text link
    As the mobile application landscape expands, wireless networks are tasked with supporting different connection profiles, including real-time traffic and delay-sensitive communications. Among many ensuing engineering challenges is the need to better understand the fundamental limits of forward error correction in non-asymptotic regimes. This article characterizes the performance of random block codes over finite-state channels and evaluates their queueing performance under maximum-likelihood decoding. In particular, classical results from information theory are revisited in the context of channels with rare transitions, and bounds on the probabilities of decoding failure are derived for random codes. This creates an analysis framework where channel dependencies within and across codewords are preserved. Such results are subsequently integrated into a queueing problem formulation. For instance, it is shown that, for random coding on the Gilbert-Elliott channel, the performance analysis based on upper bounds on error probability provides very good estimates of system performance and optimum code parameters. Overall, this study offers new insights about the impact of channel correlation on the performance of delay-aware, point-to-point communication links. It also provides novel guidelines on how to select code rates and block lengths for real-time traffic over wireless communication infrastructures

    Strong and Weak Optimizations in Classical and Quantum Models of Stochastic Processes

    Get PDF
    Among the predictive hidden Markov models that describe a given stochastic process, the {\epsilon}-machine is strongly minimal in that it minimizes every R\'enyi-based memory measure. Quantum models can be smaller still. In contrast with the {\epsilon}-machine's unique role in the classical setting, however, among the class of processes described by pure-state hidden quantum Markov models, there are those for which there does not exist any strongly minimal model. Quantum memory optimization then depends on which memory measure best matches a given problem circumstance.Comment: 14 pages, 14 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/uemum.ht

    Dynamic Resource Management in Clouds: A Probabilistic Approach

    Full text link
    Dynamic resource management has become an active area of research in the Cloud Computing paradigm. Cost of resources varies significantly depending on configuration for using them. Hence efficient management of resources is of prime interest to both Cloud Providers and Cloud Users. In this work we suggest a probabilistic resource provisioning approach that can be exploited as the input of a dynamic resource management scheme. Using a Video on Demand use case to justify our claims, we propose an analytical model inspired from standard models developed for epidemiology spreading, to represent sudden and intense workload variations. We show that the resulting model verifies a Large Deviation Principle that statistically characterizes extreme rare events, such as the ones produced by "buzz/flash crowd effects" that may cause workload overflow in the VoD context. This analysis provides valuable insight on expectable abnormal behaviors of systems. We exploit the information obtained using the Large Deviation Principle for the proposed Video on Demand use-case for defining policies (Service Level Agreements). We believe these policies for elastic resource provisioning and usage may be of some interest to all stakeholders in the emerging context of cloud networkingComment: IEICE Transactions on Communications (2012). arXiv admin note: substantial text overlap with arXiv:1209.515
    • …
    corecore