969 research outputs found

    Revisiting the growth of polyregular functions: output languages, weighted automata and unary inputs

    Full text link
    Polyregular functions are the class of string-to-string functions definable by pebble transducers (an extension of finite automata) or equivalently by MSO interpretations (a logical formalism). Their output length is bounded by a polynomial in the input length: a function computed by a kk-pebble transducer or by a kk-dimensional MSO interpretation has growth rate O(nk)O(n^k). Boja\'nczyk has recently shown that the converse holds for MSO interpretations, but not for pebble transducers. We give significantly simplified proofs of those two results, extending the former to first-order interpretations by reduction to an elementary property of N\mathbb{N}-weighted automata. For any kk, we also prove the stronger statement that there is some quadratic polyregular function whose output language differs from that of any kk-fold composition of macro tree transducers (and which therefore cannot be computed by any kk-pebble transducer). In the special case of unary input alphabets, we show that kk pebbles suffice to compute polyregular functions of growth O(nk)O(n^k). This is obtained as a corollary of a basis of simple word sequences whose ultimately periodic combinations generate all polyregular functions with unary input. Finally, we study polyregular and polyblind functions between unary alphabets (i.e. integer sequences), as well as their first-order subclasses.Comment: 27 pages, not submitted ye

    On the growth rate of polyregular functions

    Full text link
    We consider polyregular functions, which are certain string-to-string functions that have polynomial output size. We prove that a polyregular function has output size O(nk)\mathcal O(n^k) if and only if it can be defined by an MSO interpretation of dimension kk, i.e. a string-to-string transformation where every output position is interpreted, using monadic second-order logic MSO, in some kk-tuple of input positions. We also show that this characterization does not extend to pebble transducers, another model for describing polyregular functions: we show that for every k{1,2,}k \in \{1,2,\ldots\} there is a polyregular function of quadratic output size which needs at least kk pebbles to be computed

    Proceedings of JAC 2010. Journées Automates Cellulaires

    Get PDF
    The second Symposium on Cellular Automata “Journ´ees Automates Cellulaires” (JAC 2010) took place in Turku, Finland, on December 15-17, 2010. The first two conference days were held in the Educarium building of the University of Turku, while the talks of the third day were given onboard passenger ferry boats in the beautiful Turku archipelago, along the route Turku–Mariehamn–Turku. The conference was organized by FUNDIM, the Fundamentals of Computing and Discrete Mathematics research center at the mathematics department of the University of Turku. The program of the conference included 17 submitted papers that were selected by the international program committee, based on three peer reviews of each paper. These papers form the core of these proceedings. I want to thank the members of the program committee and the external referees for the excellent work that have done in choosing the papers to be presented in the conference. In addition to the submitted papers, the program of JAC 2010 included four distinguished invited speakers: Michel Coornaert (Universit´e de Strasbourg, France), Bruno Durand (Universit´e de Provence, Marseille, France), Dora Giammarresi (Universit` a di Roma Tor Vergata, Italy) and Martin Kutrib (Universit¨at Gie_en, Germany). I sincerely thank the invited speakers for accepting our invitation to come and give a plenary talk in the conference. The invited talk by Bruno Durand was eventually given by his co-author Alexander Shen, and I thank him for accepting to make the presentation with a short notice. Abstracts or extended abstracts of the invited presentations appear in the first part of this volume. The program also included several informal presentations describing very recent developments and ongoing research projects. I wish to thank all the speakers for their contribution to the success of the symposium. I also would like to thank the sponsors and our collaborators: the Finnish Academy of Science and Letters, the French National Research Agency project EMC (ANR-09-BLAN-0164), Turku Centre for Computer Science, the University of Turku, and Centro Hotel. Finally, I sincerely thank the members of the local organizing committee for making the conference possible. These proceedings are published both in an electronic format and in print. The electronic proceedings are available on the electronic repository HAL, managed by several French research agencies. The printed version is published in the general publications series of TUCS, Turku Centre for Computer Science. We thank both HAL and TUCS for accepting to publish the proceedings.Siirretty Doriast

    On synthesis of resynchronizers for transducers

    Get PDF
    We study two formalisms that allow to compare transducers over words under origin semantics: rational and regular resynchronizers, and show that the former are captured by the latter. We then consider some instances of the following synthesis problem: given transducers T_1,T_2, construct a rational (resp. regular) resynchronizer R, if it exists, such that T_1 is contained in R(T_2) under the origin semantics. We show that synthesis of rational resynchronizers is decidable for functional, and even finite-valued, one-way transducers, and undecidable for relational one-way transducers. In the two-way setting, synthesis of regular resynchronizers is shown to be decidable for unambiguous two-way transducers. For larger classes of two-way transducers, the decidability status is open

    Question answering from the web using knowledge annotation and knowledge mining techniques

    Get PDF

    Revisiting Membership Problems in Subclasses of Rational Relations

    Full text link
    We revisit the membership problem for subclasses of rational relations over finite and infinite words: Given a relation R in a class C_2, does R belong to a smaller class C_1? The subclasses of rational relations that we consider are formed by the deterministic rational relations, synchronous (also called automatic or regular) relations, and recognizable relations. For almost all versions of the membership problem, determining the precise complexity or even decidability has remained an open problem for almost two decades. In this paper, we provide improved complexity and new decidability results. (i) Testing whether a synchronous relation over infinite words is recognizable is NL-complete (PSPACE-complete) if the relation is given by a deterministic (nondeterministic) omega-automaton. This fully settles the complexity of this recognizability problem, matching the complexity of the same problem over finite words. (ii) Testing whether a deterministic rational binary relation is recognizable is decidable in polynomial time, which improves a previously known double exponential time upper bound. For relations of higher arity, we present a randomized exponential time algorithm. (iii) We provide the first algorithm to decide whether a deterministic rational relation is synchronous. For binary relations the algorithm even runs in polynomial time

    Re-pairing brackets

    Get PDF
    Consider the following one-player game. Take a well-formed sequence of opening and closing brackets (a Dyck word). As a move, the player can pair any opening bracket with any closing bracket to its right, erasing them. The goal is to re-pair (erase) the entire sequence, and the cost of a strategy is measured by its width: the maximum number of nonempty segments of symbols (separated by blank space) seen during the play. For various initial sequences, we prove upper and lower bounds on the minimum width sufficient for re-pairing. (In particular, the sequence associated with the complete binary tree of height n admits a strategy of width sub-exponential in log n.) Our two key contributions are (1) lower bounds on the width and (2) their application in automata theory: quasi-polynomial lower bounds on the translation from one-counter automata to Parikh-equivalent nondeterministic finite automata. The latter result answers a question by Atig et al. (2016)
    corecore