1,400 research outputs found

    Coupled Action Recognition and Pose Estimation from Multiple Views

    Get PDF
    Action recognition and pose estimation are two closely related topics in understanding human body movements; information from one task can be leveraged to assist the other, yet the two are often treated separately. We present here a framework for coupled action recognition and pose estimation by formulating pose estimation as an optimization over a set of action-specific manifolds. The framework allows for integration of a 2D appearance-based action recognition system as a prior for 3D pose estimation and for refinement of the action labels using relational pose features based on the extracted 3D poses. Our experiments show that our pose estimation system is able to estimate body poses with high degrees of freedom using very few particles and can achieve state-of-the-art results on the HumanEva-II benchmark. We also thoroughly investigate the impact of pose estimation and action recognition accuracy on each other on the challenging TUM kitchen dataset. We demonstrate not only the feasibility of using extracted 3D poses for action recognition, but also improved performance in comparison to action recognition using low-level appearance feature

    On-Manifold Recursive Bayesian Estimation for Directional Domains

    Get PDF

    GP-SUM. Gaussian Processes Filtering of non-Gaussian Beliefs

    Full text link
    This work studies the problem of stochastic dynamic filtering and state propagation with complex beliefs. The main contribution is GP-SUM, a filtering algorithm tailored to dynamic systems and observation models expressed as Gaussian Processes (GP), and to states represented as a weighted sum of Gaussians. The key attribute of GP-SUM is that it does not rely on linearizations of the dynamic or observation models, or on unimodal Gaussian approximations of the belief, hence enables tracking complex state distributions. The algorithm can be seen as a combination of a sampling-based filter with a probabilistic Bayes filter. On the one hand, GP-SUM operates by sampling the state distribution and propagating each sample through the dynamic system and observation models. On the other hand, it achieves effective sampling and accurate probabilistic propagation by relying on the GP form of the system, and the sum-of-Gaussian form of the belief. We show that GP-SUM outperforms several GP-Bayes and Particle Filters on a standard benchmark. We also demonstrate its use in a pushing task, predicting with experimental accuracy the naturally occurring non-Gaussian distributions.Comment: WAFR 2018, 16 pages, 7 figure

    Multitarget Tracking Using Orientation Estimation for Optical Belt Sorting

    Get PDF
    In optical belt sorting, accurate predictions of the bulk material particles’ motions are required for high-quality results. By implementing a multitarget tracker tailored to the scenario and deriving novel motion models, the predictions are greatly enhanced. The tracker’s reliability is improved by also considering the particles’ orientations. To this end, new estimators for directional quantities based on orthogonal basis functions are presented and shown to outperform the state of the art
    • …
    corecore