351 research outputs found

    Multi-View Picking: Next-best-view Reaching for Improved Grasping in Clutter

    Full text link
    Camera viewpoint selection is an important aspect of visual grasp detection, especially in clutter where many occlusions are present. Where other approaches use a static camera position or fixed data collection routines, our Multi-View Picking (MVP) controller uses an active perception approach to choose informative viewpoints based directly on a distribution of grasp pose estimates in real time, reducing uncertainty in the grasp poses caused by clutter and occlusions. In trials of grasping 20 objects from clutter, our MVP controller achieves 80% grasp success, outperforming a single-viewpoint grasp detector by 12%. We also show that our approach is both more accurate and more efficient than approaches which consider multiple fixed viewpoints.Comment: ICRA 2019 Video: https://youtu.be/Vn3vSPKlaEk Code: https://github.com/dougsm/mvp_gras

    Design of a polishing tool for collaborative robotics using minimum viable product approach

    Full text link
    This is an Author's Accepted Manuscript of an article published in Carlos Perez-Vidal, Luis Gracia, Samuel Sanchez-Caballero, J. Ernesto Solanes, Alessandro Saccon & Josep Tornero (2019) Design of a polishing tool for collaborative robotics using minimum viable product approach, International Journal of Computer Integrated Manufacturing, 32:9, 848-857, DOI: 10.1080/0951192X.2019.1637026 [copyright Taylor & Francis], available online at: http://www.tandfonline.com/10.1080/0951192X.2019.1637026[EN] A collaborative tool for robotic polishing is developed in this work in order to allow the simultaneous operation of the robot system and human operator to cooperatively carry out the polishing task. For this purpose, the collaborative environment is detailed and the polishing application is designed. Moreover, the polishing tool is developed and its implementation using the minimum viable product approach is obtained. Furthermore, a robust hybrid position-force control is proposed to use the developed tool attached to a robot system and some experiments are given to show its performance.This work was supported in part by the Ministerio de Ciencia e Innovacion (Spanish Government) under project [DPI2017-87656-C2-1-R] and the Generalitat Valenciana under Grant [VALi+ d APOSTD/2016/044].Perez-Vidal, C.; Gracia Calandin, LI.; Sanchez-Caballero, S.; Solanes Galbis, JE.; Saccon, A.; Tornero Montserrat, J. (2019). Design of a polishing tool for collaborative robotics using minimum viable product approach. International Journal of Computer Integrated Manufacturing. 32(9):848-857. https://doi.org/10.1080/0951192X.2019.1637026S848857329Alders, K., M. Lehe, and G. Wan. 2001. “Method for the Automatic Recognition of Surface Defects in Body Shells and Device for Carrying Out Said Method” US Patent 6,320,654, Accessed 2001 November. https://www.google.ch/patents/US6320654Alexopoulos, K., Mavrikios, D., & Chryssolouris, G. (2013). ErgoToolkit: an ergonomic analysis tool in a virtual manufacturing environment. International Journal of Computer Integrated Manufacturing, 26(5), 440-452. doi:10.1080/0951192x.2012.731610Andres, J., Gracia, L., & Tornero, J. (2011). Calibration and control of a redundant robotic workcell for milling tasks. International Journal of Computer Integrated Manufacturing, 24(6), 561-573. doi:10.1080/0951192x.2011.566284Arnal, L., Solanes, J. E., Molina, J., & Tornero, J. (2017). Detecting dings and dents on specular car body surfaces based on optical flow. Journal of Manufacturing Systems, 45, 306-321. doi:10.1016/j.jmsy.2017.07.006Blank, S. 2010. “Perfection By Subtraction - The Minimum Feature Set”. Accessed 2018 August. http://steveblank.com/2010/03/04/perfection-by-subtraction-the-minimum-feature-set/Dimeas, F., & Aspragathos, N. (2016). Online Stability in Human-Robot Cooperation with Admittance Control. IEEE Transactions on Haptics, 9(2), 267-278. doi:10.1109/toh.2016.2518670Fitzgerald, C. “Developing Baxter, A new industrial robot with common sense for U.S. manufacturing.” 2013.Gracia, L., Sala, A., & Garelli, F. (2012). A supervisory loop approach to fulfill workspace constraints in redundant robots. Robotics and Autonomous Systems, 60(1), 1-15. doi:10.1016/j.robot.2011.07.008Gracia, L., Sala, A., & Garelli, F. (2014). Robot coordination using task-priority and sliding-mode techniques. Robotics and Computer-Integrated Manufacturing, 30(1), 74-89. doi:10.1016/j.rcim.2013.08.003Gracia, L., Solanes, J. E., Muñoz-Benavent, P., Valls Miro, J., Perez-Vidal, C., & Tornero, J. (2018). Adaptive Sliding Mode Control for Robotic Surface Treatment Using Force Feedback. Mechatronics, 52, 102-118. doi:10.1016/j.mechatronics.2018.04.008Julius, R., Schürenberg, M., Schumacher, F., & Fay, A. (2017). Transformation of GRAFCET to PLC code including hierarchical structures. Control Engineering Practice, 64, 173-194. doi:10.1016/j.conengprac.2017.03.012. E. K. (2016). TOWARDS AN AUTOMATED POLISHING SYSTEM - CAPTURING MANUAL POLISHING OPERATIONS. International Journal of Research in Engineering and Technology, 05(07), 182-192. doi:10.15623/ijret.2016.0507030Khan, A. M., Yun, D., Zuhaib, K. M., Iqbal, J., Yan, R.-J., Khan, F., & Han, C. (2017). Estimation of Desired Motion Intention and compliance control for upper limb assist exoskeleton. International Journal of Control, Automation and Systems, 15(2), 802-814. doi:10.1007/s12555-015-0151-7Kirschner, D., Velik, R., Yahyanejad, S., Brandstötter, M., & Hofbaur, M. (2016). YuMi, Come and Play with Me! A Collaborative Robot for Piecing Together a Tangram Puzzle. Interactive Collaborative Robotics, 243-251. doi:10.1007/978-3-319-43955-6_29Mohammad, A. E. K., Hong, J., & Wang, D. (2018). Design of a force-controlled end-effector with low-inertia effect for robotic polishing using macro-mini robot approach. Robotics and Computer-Integrated Manufacturing, 49, 54-65. doi:10.1016/j.rcim.2017.05.011Nagata, F., Hase, T., Haga, Z., Omoto, M., & Watanabe, K. (2007). CAD/CAM-based position/force controller for a mold polishing robot. Mechatronics, 17(4-5), 207-216. doi:10.1016/j.mechatronics.2007.01.003Nakamura, Y., Hanafusa, H., & Yoshikawa, T. (1987). Task-Priority Based Redundancy Control of Robot Manipulators. The International Journal of Robotics Research, 6(2), 3-15. doi:10.1177/027836498700600201Ries, E. 2009. “What is the Minimum Viable Product”. March. Accessed 2018 August. http://venturehacks.com/articles/minimum-viable-productRobinson, F. 2001 “A Proven Methodology to Maximize Return on Risk”. Accessed 2018 August. http://www.syncdev.com/minimum-viable-productShepherd, S., & Buchstab, A. (2014). KUKA Robots On-Site. Robotic Fabrication in Architecture, Art and Design 2014, 373-380. doi:10.1007/978-3-319-04663-1_26SYMPLEXITY. “Symbiotic Human-Robot Solutions for Complex Surface Finishing Operations.” European project funded by E.U. through the H2020. Project no. 637080. Call: H2020-FoF-2014. Topic: FoF-06-2014. Starting date: 01/ 01/2015.Duration: 48 months. Accessed 2019 March. https://www.symplexity.eu/Vihlborg, P., I. Bryngelsson, B. Lindgren, L. G. Gunnarsson, and P. Graff. 2017. “Associatio between vibration exposure and hand-arm vibration symptoms in a Swedish mechanical industry.” February 2017.Vogel, J., Haddadin, S., Jarosiewicz, B., Simeral, J. D., Bacher, D., Hochberg, L. R., … van der Smagt, P. (2015). An assistive decision-and-control architecture for force-sensitive hand–arm systems driven by human–machine interfaces. The International Journal of Robotics Research, 34(6), 763-780. doi:10.1177/027836491456153
    • …
    corecore