28,070 research outputs found

    Fast Routing Table Construction Using Small Messages

    Full text link
    We describe a distributed randomized algorithm computing approximate distances and routes that approximate shortest paths. Let n denote the number of nodes in the graph, and let HD denote the hop diameter of the graph, i.e., the diameter of the graph when all edges are considered to have unit weight. Given 0 < eps <= 1/2, our algorithm runs in weak-O(n^(1/2 + eps) + HD) communication rounds using messages of O(log n) bits and guarantees a stretch of O(eps^(-1) log eps^(-1)) with high probability. This is the first distributed algorithm approximating weighted shortest paths that uses small messages and runs in weak-o(n) time (in graphs where HD in weak-o(n)). The time complexity nearly matches the lower bounds of weak-Omega(sqrt(n) + HD) in the small-messages model that hold for stateless routing (where routing decisions do not depend on the traversed path) as well as approximation of the weigthed diameter. Our scheme replaces the original identifiers of the nodes by labels of size O(log eps^(-1) log n). We show that no algorithm that keeps the original identifiers and runs for weak-o(n) rounds can achieve a polylogarithmic approximation ratio. Variations of our techniques yield a number of fast distributed approximation algorithms solving related problems using small messages. Specifically, we present algorithms that run in weak-O(n^(1/2 + eps) + HD) rounds for a given 0 < eps <= 1/2, and solve, with high probability, the following problems: - O(eps^(-1))-approximation for the Generalized Steiner Forest (the running time in this case has an additive weak-O(t^(1 + 2eps)) term, where t is the number of terminals); - O(eps^(-2))-approximation of weighted distances, using node labels of size O(eps^(-1) log n) and weak-O(n^(eps)) bits of memory per node; - O(eps^(-1))-approximation of the weighted diameter; - O(eps^(-3))-approximate shortest paths using the labels 1,...,n.Comment: 40 pages, 2 figures, extended abstract submitted to STOC'1

    Distributed Computation of Large-scale Graph Problems

    Full text link
    Motivated by the increasing need for fast distributed processing of large-scale graphs such as the Web graph and various social networks, we study a message-passing distributed computing model for graph processing and present lower bounds and algorithms for several graph problems. This work is inspired by recent large-scale graph processing systems (e.g., Pregel and Giraph) which are designed based on the message-passing model of distributed computing. Our model consists of a point-to-point communication network of kk machines interconnected by bandwidth-restricted links. Communicating data between the machines is the costly operation (as opposed to local computation). The network is used to process an arbitrary nn-node input graph (typically nk>1n \gg k > 1) that is randomly partitioned among the kk machines (a common implementation in many real world systems). Our goal is to study fundamental complexity bounds for solving graph problems in this model. We present techniques for obtaining lower bounds on the distributed time complexity. Our lower bounds develop and use new bounds in random-partition communication complexity. We first show a lower bound of Ω(n/k)\Omega(n/k) rounds for computing a spanning tree (ST) of the input graph. This result also implies the same bound for other fundamental problems such as computing a minimum spanning tree (MST). We also show an Ω(n/k2)\Omega(n/k^2) lower bound for connectivity, ST verification and other related problems. We give algorithms for various fundamental graph problems in our model. We show that problems such as PageRank, MST, connectivity, and graph covering can be solved in O~(n/k)\tilde{O}(n/k) time, whereas for shortest paths, we present algorithms that run in O~(n/k)\tilde{O}(n/\sqrt{k}) time (for (1+ϵ)(1+\epsilon)-factor approx.) and in O~(n/k)\tilde{O}(n/k) time (for O(logn)O(\log n)-factor approx.) respectively.Comment: In Proceedings of SODA 201

    Algebraic Methods in the Congested Clique

    Full text link
    In this work, we use algebraic methods for studying distance computation and subgraph detection tasks in the congested clique model. Specifically, we adapt parallel matrix multiplication implementations to the congested clique, obtaining an O(n12/ω)O(n^{1-2/\omega}) round matrix multiplication algorithm, where ω<2.3728639\omega < 2.3728639 is the exponent of matrix multiplication. In conjunction with known techniques from centralised algorithmics, this gives significant improvements over previous best upper bounds in the congested clique model. The highlight results include: -- triangle and 4-cycle counting in O(n0.158)O(n^{0.158}) rounds, improving upon the O(n1/3)O(n^{1/3}) triangle detection algorithm of Dolev et al. [DISC 2012], -- a (1+o(1))(1 + o(1))-approximation of all-pairs shortest paths in O(n0.158)O(n^{0.158}) rounds, improving upon the O~(n1/2)\tilde{O} (n^{1/2})-round (2+o(1))(2 + o(1))-approximation algorithm of Nanongkai [STOC 2014], and -- computing the girth in O(n0.158)O(n^{0.158}) rounds, which is the first non-trivial solution in this model. In addition, we present a novel constant-round combinatorial algorithm for detecting 4-cycles.Comment: This is work is a merger of arxiv:1412.2109 and arxiv:1412.266

    Distributed Exact Shortest Paths in Sublinear Time

    Full text link
    The distributed single-source shortest paths problem is one of the most fundamental and central problems in the message-passing distributed computing. Classical Bellman-Ford algorithm solves it in O(n)O(n) time, where nn is the number of vertices in the input graph GG. Peleg and Rubinovich (FOCS'99) showed a lower bound of Ω~(D+n)\tilde{\Omega}(D + \sqrt{n}) for this problem, where DD is the hop-diameter of GG. Whether or not this problem can be solved in o(n)o(n) time when DD is relatively small is a major notorious open question. Despite intensive research \cite{LP13,N14,HKN15,EN16,BKKL16} that yielded near-optimal algorithms for the approximate variant of this problem, no progress was reported for the original problem. In this paper we answer this question in the affirmative. We devise an algorithm that requires O((nlogn)5/6)O((n \log n)^{5/6}) time, for D=O(nlogn)D = O(\sqrt{n \log n}), and O(D1/3(nlogn)2/3)O(D^{1/3} \cdot (n \log n)^{2/3}) time, for larger DD. This running time is sublinear in nn in almost the entire range of parameters, specifically, for D=o(n/log2n)D = o(n/\log^2 n). For the all-pairs shortest paths problem, our algorithm requires O(n5/3log2/3n)O(n^{5/3} \log^{2/3} n) time, regardless of the value of DD. We also devise the first algorithm with non-trivial complexity guarantees for computing exact shortest paths in the multipass semi-streaming model of computation. From the technical viewpoint, our algorithm computes a hopset G"G" of a skeleton graph GG' of GG without first computing GG' itself. We then conduct a Bellman-Ford exploration in GG"G' \cup G", while computing the required edges of GG' on the fly. As a result, our algorithm computes exactly those edges of GG' that it really needs, rather than computing approximately the entire GG'
    corecore