359,320 research outputs found

    A presentation of Quantum Logic based on an "and then" connective

    Full text link
    When a physicist performs a quantic measurement, new information about the system at hand is gathered. This paper studies the logical properties of how this new information is combined with previous information. It presents Quantum Logic as a propositional logic under two connectives: negation and the "and then" operation that combines old and new information. The "and then" connective is neither commutative nor associative. Many properties of this logic are exhibited, and some small elegant subset is shown to imply all the properties considered. No independence or completeness result is claimed. Classical physical systems are exactly characterized by the commutativity, the associativity, or the monotonicity of the "and then" connective. Entailment is defined in this logic and can be proved to be a partial order. In orthomodular lattices, the operation proposed by Finch (1969) satisfies all the properties studied in this paper. All properties satisfied by Finch's operation in modular lattices are valid in Hilbert Space Quantum Logic. It is not known whether all properties of Hilbert Space Quantum Logic are satisfied by Finch's operation in modular lattices. Non-commutative, non-associative algebraic structures generalizing Boolean algebras are defined, ideals are characterized and a homomorphism theorem is proved.Comment: 28 pages. Submitte

    The Logic of Joint Ability in Two-Player Tacit Games

    Get PDF
    Logics of joint strategic ability have recently received attention, with arguably the most influential being those in a family that includes Coalition Logic (CL) and Alternating-time Temporal Logic (ATL). Notably, both CL and ATL bypass the epistemic issues that underpin Schelling-type coordination problems, by apparently relying on the meta-level assumption of (perfectly reliable) communication between cooperating rational agents. Yet such epistemic issues arise naturally in settings relevant to ATL and CL: these logics are standardly interpreted on structures where agents move simultaneously, opening the possibility that an agent cannot foresee the concurrent choices of other agents. In this paper we introduce a variant of CL we call Two-Player Strategic Coordination Logic (SCL2). The key novelty of this framework is an operator for capturing coalitional ability when the cooperating agents cannot share strategic information. We identify significant differences in the expressive power and validities of SCL2 and CL2, and present a sound and complete axiomatization for SCL2. We briefly address conceptual challenges when shifting attention to games with more than two players and stronger notions of rationality
    • …
    corecore