157 research outputs found

    Track-Down Operations on Bilattices

    Get PDF
    This paper discusses a dualization of Fitting's notion of a "cut-down" operation on a bilattice, rendering a "track-down" operation, later used to represent the idea that a consistent opinion cannot arise from a set including an inconsistent opinion. The logic of track-down operations on bilattices is proved equivalent to the logic d_Sfde, dual to Deutsch's system S_fde. Furthermore, track-down operations are employed to provide an epistemic interpretation for paraconsistent weak Kleene logic. Finally, two logics of sequential combinations of cut-and track-down operations allow settling positively the question of whether bilattice-based semantics are available for subsystems of S_fde

    Epistemic Foundation of Stable Model Semantics

    Full text link
    Stable model semantics has become a very popular approach for the management of negation in logic programming. This approach relies mainly on the closed world assumption to complete the available knowledge and its formulation has its basis in the so-called Gelfond-Lifschitz transformation. The primary goal of this work is to present an alternative and epistemic-based characterization of stable model semantics, to the Gelfond-Lifschitz transformation. In particular, we show that stable model semantics can be defined entirely as an extension of the Kripke-Kleene semantics. Indeed, we show that the closed world assumption can be seen as an additional source of `falsehood' to be added cumulatively to the Kripke-Kleene semantics. Our approach is purely algebraic and can abstract from the particular formalism of choice as it is based on monotone operators (under the knowledge order) over bilattices only.Comment: 41 pages. To appear in Theory and Practice of Logic Programming (TPLP

    A Paraconsistent Higher Order Logic

    Full text link
    Classical logic predicts that everything (thus nothing useful at all) follows from inconsistency. A paraconsistent logic is a logic where an inconsistency does not lead to such an explosion, and since in practice consistency is difficult to achieve there are many potential applications of paraconsistent logics in knowledge-based systems, logical semantics of natural language, etc. Higher order logics have the advantages of being expressive and with several automated theorem provers available. Also the type system can be helpful. We present a concise description of a paraconsistent higher order logic with countable infinite indeterminacy, where each basic formula can get its own indeterminate truth value (or as we prefer: truth code). The meaning of the logical operators is new and rather different from traditional many-valued logics as well as from logics based on bilattices. The adequacy of the logic is examined by a case study in the domain of medicine. Thus we try to build a bridge between the HOL and MVL communities. A sequent calculus is proposed based on recent work by Muskens.Comment: Originally in the proceedings of PCL 2002, editors Hendrik Decker, Joergen Villadsen, Toshiharu Waragai (http://floc02.diku.dk/PCL/). Correcte

    Strict/Tolerant Logics Built Using Generalized Weak Kleene Logics

    Get PDF
    This paper continues my work of [9], which showed there was a broad family of many valued logics that have a strict/tolerant counterpart. Here we consider a generalization of weak Kleene three valued logic, instead of the strong version that was background for that earlier work. We explain the intuition behind that generalization, then determine a subclass of strict/tolerant structures in which a generalization of weak Kleene logic produces the same results that the strong Kleene generalization did. This paper provides much background, but is not self-contained. Some results from [9] are called on, and are not reproved here. [9]  Melvin C. Fitting. “A Family of Strict/Tolerant Logics”. In: Journal of Philosophical Logic (2020). Online. Print publication forthcoming

    An encompassing framework for Paraconsistent Logic Programs

    Get PDF
    AbstractWe propose a framework which extends Antitonic Logic Programs [Damásio and Pereira, in: Proc. 6th Int. Conf. on Logic Programming and Nonmonotonic Reasoning, Springer, 2001, p. 748] to an arbitrary complete bilattice of truth-values, where belief and doubt are explicitly represented. Inspired by Ginsberg and Fitting's bilattice approaches, this framework allows a precise definition of important operators found in logic programming, such as explicit and default negation. In particular, it leads to a natural semantical integration of explicit and default negation through the Coherence Principle [Pereira and Alferes, in: European Conference on Artificial Intelligence, 1992, p. 102], according to which explicit negation entails default negation. We then define Coherent Answer Sets, and the Paraconsistent Well-founded Model semantics, generalizing many paraconsistent semantics for logic programs. In particular, Paraconsistent Well-Founded Semantics with eXplicit negation (WFSXp) [Alferes et al., J. Automated Reas. 14 (1) (1995) 93–147; Damásio, PhD thesis, 1996]. The framework is an extension of Antitonic Logic Programs for most cases, and is general enough to capture Probabilistic Deductive Databases, Possibilistic Logic Programming, Hybrid Probabilistic Logic Programs, and Fuzzy Logic Programming. Thus, we have a powerful mathematical formalism for dealing simultaneously with default, paraconsistency, and uncertainty reasoning. Results are provided about how our semantical framework deals with inconsistent information and with its propagation by the rules of the program
    • …
    corecore