348,727 research outputs found

    Test of a majority-based reversible (quantum) 4 bits ripple-carry adder in adiabatic calculation

    Get PDF
    Quantum computing and circuits are of growing interest and so is reversible logic as it plays an important role in the synthesis of circuits dedicated to quantum computation. Moreover, reversible logic provides an alternative to classical computing machines, that may overcome many of the power dissipation problems in the near future. As a proof of concept we designed and tested a reversible 4 bits ripple-carry adder based on a do-spy-undo structure. This paper presents some performances obtained with such a chip processed in standard 0.35 μm CMOS technology and used in real reversible calculation (in this study, computations are performed in both directions such that addition and subtraction are made reversibly with the same chip). We also discuss the superiority of using adiabatic signals over classical rectangular pulses when using dual-line pass-transistor logic gates. Adiabatic signals allow the signal energy stored on the various capacitances of the circuit to be redistributed rather than being dissipated as heat. Finally, we show that adiabatic signals allow to avoid calculation errors introduced by the use of conventional rectangular pulses and allow to drastically reduce the number of pulse resynchronization in large circuits. Index Terms—reversible computation, design, implementation, pass-transistor logic, ripple-carry adder, Spectre simulation, quantum computation, adiabatic signal, test and measuremen

    Comment on `Hawking radiation from fluctuating black holes'

    Full text link
    Takahashi & Soda (2010 Class. Quantum Grav. v27 p175008, arXiv:1005.0286) have recently considered the effect (at lowest non-trivial order) of dynamical, quantized gravitational fluctuations on the spectrum of scalar Hawking radiation from a collapsing Schwarzschild black hole. However, due to an unfortunate choice of gauge, the dominant (even divergent) contribution to the coefficient of the spectrum correction that they identify is a pure gauge artifact. I summarize the logic of their calculation, comment on the divergences encountered in its course and comment on how they could be eliminated, and thus the calculation be completed.Comment: 12 pages, 1 fig; feynmp, amsref

    Flow-based reputation with uncertainty: Evidence-Based Subjective Logic

    Full text link
    The concept of reputation is widely used as a measure of trustworthiness based on ratings from members in a community. The adoption of reputation systems, however, relies on their ability to capture the actual trustworthiness of a target. Several reputation models for aggregating trust information have been proposed in the literature. The choice of model has an impact on the reliability of the aggregated trust information as well as on the procedure used to compute reputations. Two prominent models are flow-based reputation (e.g., EigenTrust, PageRank) and Subjective Logic based reputation. Flow-based models provide an automated method to aggregate trust information, but they are not able to express the level of uncertainty in the information. In contrast, Subjective Logic extends probabilistic models with an explicit notion of uncertainty, but the calculation of reputation depends on the structure of the trust network and often requires information to be discarded. These are severe drawbacks. In this work, we observe that the `opinion discounting' operation in Subjective Logic has a number of basic problems. We resolve these problems by providing a new discounting operator that describes the flow of evidence from one party to another. The adoption of our discounting rule results in a consistent Subjective Logic algebra that is entirely based on the handling of evidence. We show that the new algebra enables the construction of an automated reputation assessment procedure for arbitrary trust networks, where the calculation no longer depends on the structure of the network, and does not need to throw away any information. Thus, we obtain the best of both worlds: flow-based reputation and consistent handling of uncertainties
    • …
    corecore