745 research outputs found

    Programmable dispersion on a photonic integrated circuit for classical and quantum applications

    Get PDF
    We demonstrate a large-scale tunable-coupling ring resonator array, suitable for high-dimensional classical and quantum transforms, in a CMOS-compatible silicon photonics platform. The device consists of a waveguide coupled to 15 ring-based dispersive elements with programmable linewidths and resonance frequencies. The ability to control both quality factor and frequency of each ring provides an unprecedented 30 degrees of freedom in dispersion control on a single spatial channel. This programmable dispersion control system has a range of applications, including mode-locked lasers, quantum key distribution, and photon-pair generation. We also propose a novel application enabled by this circuit – high-speed quantum communications using temporal-mode-based quantum data locking – and discuss the utility of the system for performing the high-dimensional unitary optical transformations necessary for a quantum data locking demonstration

    Quantum Data Locking for Secure Communication against an Eavesdropper with Time-Limited Storage

    Get PDF
    Quantum cryptography allows for unconditionally secure communication against an eavesdropper endowed with unlimited computational power and perfect technologies, who is only constrained by the laws of physics. We review recent results showing that, under the assumption that the eavesdropper can store quantum information only for a limited time, it is possible to enhance the performance of quantum key distribution in both a quantitative and qualitative fashion. We consider quantum data locking as a cryptographic primitive and discuss secure communication and key distribution protocols. For the case of a lossy optical channel, this yields the theoretical possibility of generating secret key at a constant rate of 1 bit per mode at arbitrarily long communication distances.United States. Army Research Office (United States. Defense Advanced Research Projects Agency. Quiness Program (W31P4Q-12-1-0019

    Multidimensional Frequency Domain Analysis of Full-Volume fMRI Reveals Significant Effects of Age, Gender, and Mental Illness on the Spatiotemporal Organization of Resting-State Brain Activity

    Get PDF
    Clinical research employing functional magnetic resonance imaging (fMRI) is often conducted within the connectionist paradigm, focusing on patterns of connectivity between voxels, regions of interest (ROIs) or spatially distributed functional networks. Connectivity-based analyses are concerned with pairwise correlations of the temporal activation associated with restrictions of the whole-brain hemodynamic signal to locations of a priori interest. There is a more abstract question however that such spatially granular correlation-based approaches do not elucidate: Are the broad spatiotemporal organizing principles of brains in certain populations distinguishable from those of others? Global patterns (in space and time) of hemodynamic activation are rarely scrutinized for features that might characterize complex psychiatric conditions, aging effects or gender—among other variables of potential interest to researchers. We introduce a canonical, transparent technique for characterizing the role in overall brain activation of spatially scaled periodic patterns with given temporal recurrence rates. A core feature of our technique is the spatiotemporal spectral profile (STSP), a readily interpretable 2D reduction of the native four-dimensional brain × time frequency domain that is still “big enough” to capture important group differences in globally patterned brain activation. Its power to distinguish populations of interest is demonstrated on a large balanced multi-site resting fMRI dataset with nearly equal numbers of schizophrenia patients and healthy controls. Our analysis reveals striking differences in the spatiotemporal organization of brain activity that correlate with the presence of diagnosed schizophrenia, as well as with gender and age. To the best of our knowledge, this is the first demonstration that a 4D frequency domain analysis of full volume fMRI data exposes clinically or demographically relevant differences in resting-state brain function

    Neuromusculoskeletal interfacing of lower limb prostheses

    Get PDF
    The method of bone-anchored attachment of limb prostheses via a percutaneous skeletal extension was developed to circumvent commonly reported problems associated with the conventional method of socket attachment. In addition to the direct structural connection, the percutaneous implant may serve as a conduit for bidirectional communication between muscles and nerves within the residual limb and the prosthesis. Implanted electrodes recording myoelectric activity within the residual limb can be used to infer the user’s movement intent and may thus be used to provide intuitive control of the prosthesis in real time. Sensory feedback from the prosthesis can be provided back to the user by neurostimulation via implanted neural electrodes, thus closing the control loop. Together the skeletal, neural, and muscular interfaces form a neuromusculoskeletal interface. This technology is currently being evaluated in a clinical trial on individuals with upper limb amputation, but it has not yet been used in the lower limb. The aim of this thesis has been to translate the concept of neuromusculoskeletal interfacing to the lower limb. An additional aim has been to reduce the limitations on high impact activities, that exist on current available systems for bone-anchored attachment of limb prostheses. To achieve these aims, a new design of the neuromusculoskeletal interface was developed where the structural capacity was increased with respect to current versions of the implant system to accommodate increased loads for highly active usage by individuals with lower limb amputation. In order to set adequate design requirements, investigations were conducted to determine the load exposure of bone-anchored implant systems during a number of loadbearing activities. Structural verification of the neuromusculoskeletal interface has been performed using numerical simulations as well as physical testing in static and dynamic conditions. The first steps towards clinical implementation of the lower limb neuromusculoskeletal interface have been taken by the development of a clinical research protocol that has been approved by the Swedish Ethical Review Authority

    Photonic quantum data locking

    Get PDF
    Quantum data locking is a quantum phenomenon that allows us to encrypt a long message with a small secret key with information-theoretic security. This is in sharp contrast with classical information theory where, according to Shannon, the secret key needs to be at least as long as the message. Here we explore photonic architectures for quantum data locking, where information is encoded in multi-photon states and processed using multi-mode linear optics and photo-detection, with the goal of extending an initial secret key into a longer one. The secret key consumption depends on the number of modes and photons employed. In the no-collision limit, where the likelihood of photon bunching is suppressed, the key consumption is shown to be logarithmic in the dimensions of the system. Our protocol can be viewed as an application of the physics of Boson Sampling to quantum cryptography. Experimental realisations are challenging but feasible with state-of-the-art technology, as techniques recently used to demonstrate Boson Sampling can be adapted to our scheme (e.g., Phys. Rev. Lett. 123, 250503, 2019)

    A view of Neural Networks as dynamical systems

    Full text link
    We consider neural networks from the point of view of dynamical systems theory. In this spirit we review recent results dealing with the following questions, adressed in the context of specific models. 1. Characterizing the collective dynamics; 2. Statistical analysis of spikes trains; 3. Interplay between dynamics and network structure; 4. Effects of synaptic plasticity.Comment: Review paper, 51 pages, 10 figures. submitte
    • …
    corecore