214 research outputs found

    The localization effect for eigenfunctions of the mixed boundary value problem in a thin cylinder with distorted ends

    Full text link
    A simple sufficient condition on curved end of a straight cylinder is found that provides a localization of the principal eigenfunction of the mixed boundary value for the Laplace operator with the Dirichlet conditions on the lateral side. Namely, the eigenfunction concentrates in the vicinity of the ends and decays exponentially in the interior. Similar effects are observed in the Dirichlet and Neumann problems, too.Comment: 25 pages, 10 figure

    Complete asymptotic expansions for eigenvalues of Dirichlet Laplacian in thin three-dimensional rods

    Get PDF
    We consider Dirichlet Laplacian in a thin curved three-dimensional rod. The rod is finite. Its cross-section is constant and small, and rotates along the reference curve in an arbitrary way. We find a two-parametric set of the eigenvalues of such operator and construct their complete asymptotic expansions. We show that this two-parametric set contains any prescribed number of the first eigenvalues of the considered operator. We obtain the complete asymptotic expansions for the eigenfunctions associated with these first eigenvalues

    Annual research briefs, 1993

    Get PDF
    The 1993 annual progress reports of the Research Fellow and students of the Center for Turbulence Research are included. The first group of reports are directed towards the theory and application of active control in turbulent flows including the development of a systematic mathematical procedure based on the Navier Stokes equations for flow control. The second group of reports are concerned with the prediction of turbulent flows. The remaining articles are devoted to turbulent reacting flows, turbulence physics, experiments, and simulations

    Non-scattering wavenumbers and far field invisibility for a finite set of incident/scattering directions

    Get PDF
    We investigate a time harmonic acoustic scattering problem by a penetrable inclusion with compact support embedded in the free space. We consider cases where an observer can produce incident plane waves and measure the far field pattern of the resulting scattered field only in a finite set of directions. In this context, we say that a wavenumber is a non-scattering wavenumber if the associated relative scattering matrix has a non trivial kernel. Under certain assumptions on the physical coefficients of the inclusion, we show that the non-scattering wavenumbers form a (possibly empty) discrete set. Then, in a second step, for a given real wavenumber and a given domain D, we present a constructive technique to prove that there exist inclusions supported in D for which the corresponding relative scattering matrix is null. These inclusions have the important property to be impossible to detect from far field measurements. The approach leads to a numerical algorithm which is described at the end of the paper and which allows to provide examples of (approximated) invisible inclusions.Comment: 20 pages, 7 figure

    Predicting room acoustical behavior with the ODEON computer model

    Get PDF
    corecore