2,723 research outputs found

    Long gravitational-wave transients and associated detection strategies for a network of terrestrial interferometers

    Get PDF
    Searches for gravitational waves (GWs) traditionally focus on persistent sources (e.g., pulsars or the stochastic background) or on transients sources (e.g., compact binary inspirals or core-collapse supernovae), which last for time scales of milliseconds to seconds. We explore the possibility of long GW transients with unknown waveforms lasting from many seconds to weeks. We propose a novel analysis technique to bridge the gap between short O(s) “burst” analyses and persistent stochastic analyses. Our technique utilizes frequency-time maps of GW strain cross power between two spatially separated terrestrial GW detectors. The application of our cross power statistic to searches for GW transients is framed as a pattern recognition problem, and we discuss several pattern-recognition techniques. We demonstrate these techniques by recovering simulated GW signals in simulated detector noise. We also recover environmental noise artifacts, thereby demonstrating a novel technique for the identification of such artifacts in GW interferometers. We compare the efficiency of this framework to other techniques such as matched filtering

    Measuring temperature - dependent propagating disturbances in coronal fan loops using multiple SDO/AIA channels and surfing transform technique

    Get PDF
    A set of co-aligned high resolution images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) is used to investigate propagating disturbances (PDs) in warm fan loops at the periphery of a non-flaring active region NOAA AR 11082. To measure PD speeds at multiple coronal temperatures, a new data analysis methodology is proposed enabling quantitative description of subvisual coronal motions with low signal-to-noise ratios of the order of 0.1 %. The technique operates with a set of one-dimensional "surfing" signals extracted from position-time plots of several AIA channels through a modified version of Radon transform. The signals are used to evaluate a two-dimensional power spectral density distribution in the frequency - velocity space which exhibits a resonance in the presence of quasi-periodic PDs. By applying this analysis to the same fan loop structures observed in several AIA channels, we found that the traveling velocity of PDs increases with the temperature of the coronal plasma following the square root dependence predicted for the slow mode magneto-acoustic wave which seems to be the dominating wave mode in the studied loop structures. This result extends recent observations by Kiddie et al. (Solar Phys., 2012) to a more general class of fan loop systems not associated with sunspots and demonstrating consistent slow mode activity in up to four AIA channels.Comment: 23 pages, 8 figures, 2 table

    Array processing and forward modeling methods for the analysis of stiffened, fluid-loaded cylindrical shells

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and Woods Hole Oceanographic Institution March 1994This thesis investigates array processing and forward modeling methods for the analysis of experimental, structural acoustic data to understand wave propagation on fluid-loaded, elastic, cylindrical shells in the mid-frequency range, 2 < ka < 12. The transient, acoustic, in-plane, bistatic scattering response to wideband, plane waves at various angles of incidence was collected by a synthetic array for three shells, a finite, air-filled, empty thin shell, a duplicate shell stiffened with four unequally spaced ring-stiffeners and a duplicate ribbed shell augmented by resiliently-mounted, wave-bearing, internal structural elements. Array and signal processing techniques, including source deconvolution, array weighting, conventional focusing and the removal of the geometrically scattered contribution, are used to transform the collected data to a more easily interpreted representation. The resulting waveforms show that part of the transient, dynamic, structural response of the shell surface which is capable of radiating to the far field. Compressional membrane waves are directly observable in this representation and evidence of flexural membrane waves is present. Comparisons between the shells show energy compartmentalized by the ring stiffeners and coupled into the wave-bearing internals. Energy calculations show a decay rate of 30dB/msec due to radiation for the Empty shell but only 10dB/msec for the other shells at bow incidence. The Radon Transform is used to estimate the reflection coefficient of compressional waves at the shell endcap as 0.2. The measurement array does not provide enough resolution to allow use of this technique to determine the reflection, transmission and coupling coefficients at the ring stiffeners. Therefore, a forward modeling technique is used to further analyze the 0° incidence case. This modeling couples a Transmission Line model of the shell with a Simulated Annealing approach to multi-dimensional, parameter estimation. This procedure estimates the compressional wavespeed at 5284m/sec and a compressional decay rate of 49dB/msec. Small cross-coupling coefficients between flexural and compressional wavetypes at the slope discontinuities on the Empty shell are found to be responsible for most of the radiation later in time. High reflection coefficients at the ring stiffeners on the Ribbed shell are shown to cause energy compartmentalization in the bays between ribs and pressure doubling of incident structural waves at the ribs.Support for this thesis was provided by Office of Naval Research, Structural Mechanics and Advanced Vehicle Technology Divisions, it is most gratefully acknowledged

    Digital Image Processing

    Get PDF
    Newspapers and the popular scientific press today publish many examples of highly impressive images. These images range, for example, from those showing regions of star birth in the distant Universe to the extent of the stratospheric ozone depletion over Antarctica in springtime, and to those regions of the human brain affected by Alzheimer’s disease. Processed digitally to generate spectacular images, often in false colour, they all make an immediate and deep impact on the viewer’s imagination and understanding. Professor Jonathan Blackledge’s erudite but very useful new treatise Digital Image Processing: Mathematical and Computational Methods explains both the underlying theory and the techniques used to produce such images in considerable detail. It also provides many valuable example problems - and their solutions - so that the reader can test his/her grasp of the physical, mathematical and numerical aspects of the particular topics and methods discussed. As such, this magnum opus complements the author’s earlier work Digital Signal Processing. Both books are a wonderful resource for students who wish to make their careers in this fascinating and rapidly developing field which has an ever increasing number of areas of application. The strengths of this large book lie in: • excellent explanatory introduction to the subject; • thorough treatment of the theoretical foundations, dealing with both electromagnetic and acoustic wave scattering and allied techniques; • comprehensive discussion of all the basic principles, the mathematical transforms (e.g. the Fourier and Radon transforms), their interrelationships and, in particular, Born scattering theory and its application to imaging systems modelling; discussion in detail - including the assumptions and limitations - of optical imaging, seismic imaging, medical imaging (using ultrasound), X-ray computer aided tomography, tomography when the wavelength of the probing radiation is of the same order as the dimensions of the scatterer, Synthetic Aperture Radar (airborne or spaceborne), digital watermarking and holography; detail devoted to the methods of implementation of the analytical schemes in various case studies and also as numerical packages (especially in C/C++); • coverage of deconvolution, de-blurring (or sharpening) an image, maximum entropy techniques, Bayesian estimators, techniques for enhancing the dynamic range of an image, methods of filtering images and techniques for noise reduction; • discussion of thresholding, techniques for detecting edges in an image and for contrast stretching, stochastic scattering (random walk models) and models for characterizing an image statistically; • investigation of fractal images, fractal dimension segmentation, image texture, the coding and storing of large quantities of data, and image compression such as JPEG; • valuable summary of the important results obtained in each Chapter given at its end; • suggestions for further reading at the end of each Chapter. I warmly commend this text to all readers, and trust that they will find it to be invaluable. Professor Michael J Rycroft Visiting Professor at the International Space University, Strasbourg, France, and at Cranfield University, England

    Mitigation of Wide Angle Signal Interference in Terahertz Imaging Systems

    Get PDF
    abstract: The objective of this work is to design a low-profile compact Terahertz (THz) imaging system that can be installed in portable devices, unmanned aerial vehicles (UAVs), or CubeSats. Taking advantage of the rotational motion of these platforms, one can use linear antennas, such as leaky-wave antennas or linear phased arrays, to achieve fast image acquisition using simple RF front-end topologies. The proposed system relies on a novel image reconstructing technique that uses the principles of computerized tomography (Fourier-slice theorem). It can be implemented using a rotating antenna that produces a highly astigmatic fan-beam. In this work, the imaging system is composed of a linear phased antenna array with a highly directive beam pattern in the E-plane allowing for high spatial resolution imaging. However, the pattern is almost omnidirectional in the H-plane and extends beyond the required field-of-view (FOV). This is a major drawback as the scattered signals from any interferer outside the FOV will still be received by the imaging aperture and cause distortion in the reconstructed image. Also, fan beams exhibit significant distortion (curvature) when tilted at large angles, thus introducing errors in the final image due to its failure to achieve the assumed reconstructing algorithm. Therefore, a new design is proposed to alleviate these disadvantages. A 14Ă—64 elements non-uniform array with an optimal flat-top pattern is designed with an iterative process using linear perturbation of a close starting pattern until the desired pattern is acquired. The principal advantage of this design is that it restricts the radiated/received power into the required FOV. As a result, a significant enhancement in the quality of images is achieved especially in the mitigation of the effect of any interferer outside the FOV. In this report, these two designs are presented and compared in terms of their imaging efficiency along with a series of numerical results verifying the proof of concept.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Development of correction algorithm for pulsed terahertz computed tomography (THz-CT)

    Get PDF
    For last couple of decades, there has been a considerable improvement in Terahertz (THz) science, technology, and imaging. In particular, the technique of 3-D computed tomography has been adapted to the THz range. However, it has been widely recognized that a fundamental limitation to THz computed tomography imaging is the refractive effects of the sample under study. The finite refractive index of materials in the THz range can severally refract THz beams which probe the internal structure of a sample during the acquisition of tomography data. Refractive effects lead to anomalously high local absorption coefficients in the reconstructed image near the material’s boundaries. Three refractive effects are identified: (a) Fresnel reflection power losses at the boundaries, (b) an increase in path length of the probing THz radiation, and (c) steering of the THz beam by the sample such that the emerging THz radiation is no longer collected by the THz detector. In addition, the finite size of the THz beam dominates the measured THz transmission when the edges of the sample are probed using THz tomography. These boundary phenomena can dominate in the reconstructed THz-CT images making it difficult to distinguish any hidden finer structural defect(s) inside the material. In this dissertation, an algorithm has been developed to remove these refractive and finite beam size effects from THz-CT reconstructed images. The algorithm is successfully implemented on cylindrical shaped objects. A longer term goal of the research is to study the internal structure of natural cork wine stoppers by pulsed Terahertz tomography (THz-CT). It has previously been shown that THz imaging can detect the internal structure of natural cork. Moreover, the internal structure of natural cork stoppers dominates the diffusion of gasses and liquids through the cork. By using THz computed tomography, one can recreate a 3D image of the sample’s internal structure which could then be used to predict non-destructively the diffusion properties of the cork. However, refractive and boundary effects which arise in the THz tomographic image masks the presence of the cork’s internal structure. Applying the correction algorithms which are developed in this dissertation to natural cork stoppers suppresses the refractive and boundary anomalies enabling better visualization of the cork’s internal structure
    • …
    corecore