150 research outputs found

    Two results on the digraph chromatic number

    Full text link
    It is known (Bollob\'{a}s (1978); Kostochka and Mazurova (1977)) that there exist graphs of maximum degree Δ\Delta and of arbitrarily large girth whose chromatic number is at least cΔ/logΔc \Delta / \log \Delta. We show an analogous result for digraphs where the chromatic number of a digraph DD is defined as the minimum integer kk so that V(D)V(D) can be partitioned into kk acyclic sets, and the girth is the length of the shortest cycle in the corresponding undirected graph. It is also shown, in the same vein as an old result of Erdos (1962), that there are digraphs with arbitrarily large chromatic number where every large subset of vertices is 2-colorable

    Uniquely D-colourable digraphs with large girth

    Full text link
    Let C and D be digraphs. A mapping f:V(D)V(C)f:V(D)\to V(C) is a C-colouring if for every arc uvuv of D, either f(u)f(v)f(u)f(v) is an arc of C or f(u)=f(v)f(u)=f(v), and the preimage of every vertex of C induces an acyclic subdigraph in D. We say that D is C-colourable if it admits a C-colouring and that D is uniquely C-colourable if it is surjectively C-colourable and any two C-colourings of D differ by an automorphism of C. We prove that if a digraph D is not C-colourable, then there exist digraphs of arbitrarily large girth that are D-colourable but not C-colourable. Moreover, for every digraph D that is uniquely D-colourable, there exists a uniquely D-colourable digraph of arbitrarily large girth. In particular, this implies that for every rational number r1r\geq 1, there are uniquely circularly r-colourable digraphs with arbitrarily large girth.Comment: 21 pages, 0 figures To be published in Canadian Journal of Mathematic

    Improved Distributed Fractional Coloring Algorithms

    Get PDF
    We prove new bounds on the distributed fractional coloring problem in the LOCAL model. Fractional cc-colorings can be understood as multicolorings as follows. For some natural numbers pp and qq such that p/qcp/q\leq c, each node vv is assigned a set of at least qq colors from {1,,p}\{1,\dots,p\} such that adjacent nodes are assigned disjoint sets of colors. The minimum cc for which a fractional cc-coloring of a graph GG exists is called the fractional chromatic number χf(G)\chi_f(G) of GG. Recently, [Bousquet, Esperet, and Pirot; SIROCCO '21] showed that for any constant ϵ>0\epsilon>0, a fractional (Δ+ϵ)(\Delta+\epsilon)-coloring can be computed in ΔO(Δ)+O(Δlogn)\Delta^{O(\Delta)} + O(\Delta\cdot\log^* n) rounds. We show that such a coloring can be computed in only O(log2Δ)O(\log^2 \Delta) rounds, without any dependency on nn. We further show that in O(lognϵ)O\big(\frac{\log n}{\epsilon}\big) rounds, it is possible to compute a fractional (1+ϵ)χf(G)(1+\epsilon)\chi_f(G)-coloring, even if the fractional chromatic number χf(G)\chi_f(G) is not known. That is, this problem can be approximated arbitrarily well by an efficient algorithm in the LOCAL model. For the standard coloring problem, it is only known that an O(lognloglogn)O\big(\frac{\log n}{\log\log n}\big)-approximation can be computed in polylogarithmic time in the LOCAL model. We also show that our distributed fractional coloring approximation algorithm is best possible. We show that in trees, which have fractional chromatic number 22, computing a fractional (2+ϵ)(2+\epsilon)-coloring requires at least Ω(lognϵ)\Omega\big(\frac{\log n}{\epsilon}\big) rounds. We finally study fractional colorings of regular grids. In [Bousquet, Esperet, and Pirot; SIROCCO '21], it is shown that in regular grids of bounded dimension, a fractional (2+ϵ)(2+\epsilon)-coloring can be computed in time O(logn)O(\log^* n). We show that such a coloring can even be computed in O(1)O(1) rounds in the LOCAL model

    Circular Coloring of Random Graphs: Statistical Physics Investigation

    Full text link
    Circular coloring is a constraints satisfaction problem where colors are assigned to nodes in a graph in such a way that every pair of connected nodes has two consecutive colors (the first color being consecutive to the last). We study circular coloring of random graphs using the cavity method. We identify two very interesting properties of this problem. For sufficiently many color and sufficiently low temperature there is a spontaneous breaking of the circular symmetry between colors and a phase transition forwards a ferromagnet-like phase. Our second main result concerns 5-circular coloring of random 3-regular graphs. While this case is found colorable, we conclude that the description via one-step replica symmetry breaking is not sufficient. We observe that simulated annealing is very efficient to find proper colorings for this case. The 5-circular coloring of 3-regular random graphs thus provides a first known example of a problem where the ground state energy is known to be exactly zero yet the space of solutions probably requires a full-step replica symmetry breaking treatment.Comment: 19 pages, 8 figures, 3 table

    Lower Bounds and Series for the Ground State Entropy of the Potts Antiferromagnet on Archimedean Lattices and their Duals

    Full text link
    We prove a general rigorous lower bound for W(Λ,q)=exp(S0(Λ,q)/kB)W(\Lambda,q)=\exp(S_0(\Lambda,q)/k_B), the exponent of the ground state entropy of the qq-state Potts antiferromagnet, on an arbitrary Archimedean lattice Λ\Lambda. We calculate large-qq series expansions for the exact Wr(Λ,q)=q1W(Λ,q)W_r(\Lambda,q)=q^{-1}W(\Lambda,q) and compare these with our lower bounds on this function on the various Archimedean lattices. It is shown that the lower bounds coincide with a number of terms in the large-qq expansions and hence serve not just as bounds but also as very good approximations to the respective exact functions Wr(Λ,q)W_r(\Lambda,q) for large qq on the various lattices Λ\Lambda. Plots of Wr(Λ,q)W_r(\Lambda,q) are given, and the general dependence on lattice coordination number is noted. Lower bounds and series are also presented for the duals of Archimedean lattices. As part of the study, the chromatic number is determined for all Archimedean lattices and their duals. Finally, we report calculations of chromatic zeros for several lattices; these provide further support for our earlier conjecture that a sufficient condition for Wr(Λ,q)W_r(\Lambda,q) to be analytic at 1/q=01/q=0 is that Λ\Lambda is a regular lattice.Comment: 39 pages, Revtex, 9 encapsulated postscript figures, to appear in Phys. Rev.

    Uniformly Random Colourings of Sparse Graphs

    Full text link
    We analyse uniformly random proper kk-colourings of sparse graphs with maximum degree Δ\Delta in the regime Δ<klnk\Delta < k\ln k . This regime corresponds to the lower side of the shattering threshold for random graph colouring, a paradigmatic example of the shattering threshold for random Constraint Satisfaction Problems. We prove a variety of results about the solution space geometry of colourings of fixed graphs, generalising work of Achlioptas, Coja-Oghlan, and Molloy on random graphs, and justifying the performance of stochastic local search algorithms in this regime. Our central proof relies only on elementary techniques, namely the first-moment method and a quantitative induction, yet it strengthens list-colouring results due to Vu, and more recently Davies, Kang, P., and Sereni, and generalises state-of-the-art bounds from Ramsey theory in the context of sparse graphs. It further yields an approximately tight lower bound on the number of colourings, also known as the partition function of the Potts model, with implications for efficient approximate counting
    corecore