159,749 research outputs found

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    Quantification of efficiency improvements from integration of battery energy storage systems and renewable energy sources into domestic distribution networks

    Get PDF
    Due to the increasing use of renewable, non-controllable energy generation systems energy storage systems (ESS) are seen as a necessary part of future power delivery systems. ESS have gained research interest and practical implementation over the past decade and this is expected to continue into the future. This is due to the economic and operational benefits for both network operators and customers, battery energy storage system (BESS) is used as the main focus of this research paper. This paper presents an analytical study of the benefits of deploying distributed BESS in an electrical distribution network (DN). The work explores the optimum location of installing BESS and its impact on the DN performance and possible future investment. This study provides a comparison between bulk energy storage installed at three different locations; medium voltage (MV) side and low voltage (LV) side of the distribution transformer (DT) and distributed energy storage at customers’ feeders. The performance of a typical UK DN is examined under different penetration levels of wind energy generation units and BESS. The results show that the minimum storage size is obtained when BESS is installed next to the DT. However, the power loss is reduced to its minimum when BESS and wind energy are both distributed at load busbars. The study demonstrates that BESS installation has improved the loss of life factor of the distribution transformer

    pandapower - an Open Source Python Tool for Convenient Modeling, Analysis and Optimization of Electric Power Systems

    Full text link
    pandapower is a Python based, BSD-licensed power system analysis tool aimed at automation of static and quasi-static analysis and optimization of balanced power systems. It provides power flow, optimal power flow, state estimation, topological graph searches and short circuit calculations according to IEC 60909. pandapower includes a Newton-Raphson power flow solver formerly based on PYPOWER, which has been accelerated with just-in-time compilation. Additional enhancements to the solver include the capability to model constant current loads, grids with multiple reference nodes and a connectivity check. The pandapower network model is based on electric elements, such as lines, two and three-winding transformers or ideal switches. All elements can be defined with nameplate parameters and are internally processed with equivalent circuit models, which have been validated against industry standard software tools. The tabular data structure used to define networks is based on the Python library pandas, which allows comfortable handling of input and output parameters. The implementation in Python makes pandapower easy to use and allows comfortable extension with third-party libraries. pandapower has been successfully applied in several grid studies as well as for educational purposes. A comprehensive, publicly available case-study demonstrates a possible application of pandapower in an automated time series calculation

    Теоретичні основи електротехніки[

    Get PDF
    The Theory of Electrical Engineering is presented in three parts: the Basic Theories of Steady-State and Transients in Electrical Circuits and the Basic Theory of Electromagnetic Field. For students of electrotechnical specialties of higher educational establishments, as well as for scientific and technical specialists dealing with modern problems in the theory and practice of electric power engineering and electromechanics.Викладено теоретичні основи електротехніки в трьох частинах: теорія стаціонарних процесів в електричних колах, теорія перехідних процесів в електричних колах і теорія електромагнітного поля. Для студентів електротехнічних спеціальностей вищих навчальних закладів, а також для науково-технічних фахівців, що займаються сучасними проблемами в теорії і практиці електроенергетики та електромеханіки

    A new methodology called dice game optimizer for capacitor placement in distribution systems

    Get PDF
    Purpose. Shunt capacitors are installed in power system for compensating reactive power. Therefore, feeder capacity releases, voltage profile improves and power loss reduces. However, determination optimal location and size of capacitors in distributionsystems is a complex optimization problem. In order to determine the optimum size and location of the capacitor, an objective function which is generally defined based on capacitor installation costs and power losses should be minimized According to operational limitations. This paper offers a newly developed metaheuristic technique, named dice game optimizerto determine optimal size and location of capacitors in a distribution network. Dice game optimizer is a game based optimization technique that is based on the rules of the dice game.Цель. Шунтирующие конденсаторы в энергосистеме устанавливаются для компенсации реактивной мощности. Следовательно, снижается емкость фидера, улучшается профиль напряжения и снижаются потери мощности. Однако определение оптимального местоположения и размера конденсаторов в системах распределения является сложной задачей оптимизации. Чтобы определить оптимальный размер и расположение конденсатора, целевую функцию, которая обычно определяется на основе затрат на установку конденсатора и потерь мощности, следует минимизировать в соответствии с эксплуатационными ограничениями. Данная статья предлагает недавно разработанный метаэвристический метод, называемый оптимизатором игры в кости, для определения оптимального размера и расположения конденсаторов в распределительной сети. Оптимизатор игры в кости – это игровой метод оптимизации, основанный на правилах игры в кости

    On harmonic emission assessment : a discriminative approach

    Get PDF
    corecore