8 research outputs found

    The Limits of Efficiency for Open- and Closed-World Query Evaluation Under Guarded TGDs

    Get PDF
    Ontology-mediated querying and querying in the presence of constraints are two key database problems where tuple-generating dependencies (TGDs) play a central role. In ontology-mediated querying, TGDs can formalize the ontology and thus derive additional facts from the given data, while in querying in the presence of constraints, they restrict the set of admissible databases. In this work, we study the limits of efficient query evaluation in the context of the above two problems, focussing on guarded and frontier-guarded TGDs and on UCQs as the actual queries. We show that a class of ontology-mediated queries (OMQs) based on guarded TGDs can be evaluated in FPT iff the OMQs in the class are equivalent to OMQs in which the actual query has bounded treewidth, up to some reasonable assumptions. For querying in the presence of constraints, we consider classes of constraint-query specifications (CQSs) that bundle a set of constraints with an actual query. We show a dichotomy result for CQSs based on guarded TGDs that parallels the one for OMQs except that, additionally, FPT coincides with PTime combined complexity. The proof is based on a novel connection between OMQ and CQS evaluation. Using a direct proof, we also show a similar dichotomy result, again up to some reasonable assumptions, for CQSs based on frontier-guarded TGDs with a bounded number of atoms in TGD heads. Our results on CQSs can be viewed as extensions of Grohe's well-known characterization of the tractable classes of CQs (without constraints). Like Grohe's characterization, all the above results assume that the arity of relation symbols is bounded by a constant. We also study the associated meta problems, i.e., whether a given OMQ or CQS is equivalent to one in which the actual query has bounded treewidth

    Answer Counting Under Guarded TGDs

    Get PDF
    We study the complexity of answer counting for ontology-mediated queries and for querying under constraints, considering conjunctive queries and unions thereof (UCQs) as the query language and guarded TGDs as the ontology and constraint language, respectively. Our main result is a classification according to whether answer counting is fixed-parameter tractable (FPT), W[1]-equivalent, #W[1]-equivalent, #W[2]-hard, or #A[2]-equivalent, lifting a recent classification for UCQs without ontologies and constraints due to Dell et al. [Holger Dell et al., 2019]. The classification pertains to various structural measures, namely treewidth, contract treewidth, starsize, and linked matching number. Our results rest on the assumption that the arity of relation symbols is bounded by a constant and, in the case of ontology-mediated querying, that all symbols from the ontology and query can occur in the data (so-called full data schema). We also study the meta-problems for the mentioned structural measures, that is, to decide whether a given ontology-mediated query or constraint-query specification is equivalent to one for which the structural measure is bounded

    Query Answering in Probabilistic Data and Knowledge Bases

    Get PDF
    Probabilistic data and knowledge bases are becoming increasingly important in academia and industry. They are continuously extended with new data, powered by modern information extraction tools that associate probabilities with knowledge base facts. The state of the art to store and process such data is founded on probabilistic database systems, which are widely and successfully employed. Beyond all the success stories, however, such systems still lack the fundamental machinery to convey some of the valuable knowledge hidden in them to the end user, which limits their potential applications in practice. In particular, in their classical form, such systems are typically based on strong, unrealistic limitations, such as the closed-world assumption, the closed-domain assumption, the tuple-independence assumption, and the lack of commonsense knowledge. These limitations do not only lead to unwanted consequences, but also put such systems on weak footing in important tasks, querying answering being a very central one. In this thesis, we enhance probabilistic data and knowledge bases with more realistic data models, thereby allowing for better means for querying them. Building on the long endeavor of unifying logic and probability, we develop different rigorous semantics for probabilistic data and knowledge bases, analyze their computational properties and identify sources of (in)tractability and design practical scalable query answering algorithms whenever possible. To achieve this, the current work brings together some recent paradigms from logics, probabilistic inference, and database theory

    Proof-theoretic Semantics for Intuitionistic Multiplicative Linear Logic

    Get PDF
    This work is the first exploration of proof-theoretic semantics for a substructural logic. It focuses on the base-extension semantics (B-eS) for intuitionistic multiplicative linear logic (IMLL). The starting point is a review of Sandqvist’s B-eS for intuitionistic propositional logic (IPL), for which we propose an alternative treatment of conjunction that takes the form of the generalized elimination rule for the connective. The resulting semantics is shown to be sound and complete. This motivates our main contribution, a B-eS for IMLL , in which the definitions of the logical constants all take the form of their elimination rule and for which soundness and completeness are established

    Online courses for healthcare professionals: is there a role for social learning?

    Get PDF
    Background: All UK postgraduate medical trainees receive supervision from trained supervisors. Training has traditionally been delivered via face to face courses, but with increasing time pressures and complex shift patterns, access to these is difficult. To meet this challenge, we developed a two-week massive open online course (MOOC) for faculty development of clinical supervisors. Summary of Work: The MOOC was developed by a group of experienced medical educators and delivered via the FutureLearn (FL) platform which promotes social learning through interaction. This facilitates building of communities of practice, learner interaction and collaboration. We explored learner perceptions of the course, in particular the value of social learning in the context of busy healthcare professionals. We analysed responses to pre- and post-course surveys for each run of the MOOC in 2015, FL course statistics, and learner discussion board comments. Summary of Results: Over 2015, 7,225 learners registered for the course, though 6% left the course without starting. Of the 3,055 learners who began the course, 35% (1073/3055) were social learners who interacted with other participants. Around 31% (960/3055) learners participated fully in the course; this is significantly higher than the FL average of 22%. Survey responses suggest that 68% learners worked full-time, with over 75% accessing the course at home or while commuting, using laptops, smart phones and tablet devices. Discussion: Learners found the course very accessible due to the bite-sized videos, animations, etc which were manageable at the end of a busy working day. Inter-professional discussions and social learning made the learning environment more engaging. Discussion were rated as high quality as they facilitated sharing of narratives and personal reflections, as well as relevant resources. Conclusion: Social learning added value to the course by promoting sharing of resources and improved interaction between learners within the online environment. Take Home Messages: 1) MOOCs can provide faculty development efficiently with a few caveats. 2) Social learning added a new dimension to the online environment
    corecore