10,457 research outputs found

    SEGCloud: Semantic Segmentation of 3D Point Clouds

    Full text link
    3D semantic scene labeling is fundamental to agents operating in the real world. In particular, labeling raw 3D point sets from sensors provides fine-grained semantics. Recent works leverage the capabilities of Neural Networks (NNs), but are limited to coarse voxel predictions and do not explicitly enforce global consistency. We present SEGCloud, an end-to-end framework to obtain 3D point-level segmentation that combines the advantages of NNs, trilinear interpolation(TI) and fully connected Conditional Random Fields (FC-CRF). Coarse voxel predictions from a 3D Fully Convolutional NN are transferred back to the raw 3D points via trilinear interpolation. Then the FC-CRF enforces global consistency and provides fine-grained semantics on the points. We implement the latter as a differentiable Recurrent NN to allow joint optimization. We evaluate the framework on two indoor and two outdoor 3D datasets (NYU V2, S3DIS, KITTI, Semantic3D.net), and show performance comparable or superior to the state-of-the-art on all datasets.Comment: Accepted as a spotlight at the International Conference of 3D Vision (3DV 2017

    Visual Servoing from Deep Neural Networks

    Get PDF
    We present a deep neural network-based method to perform high-precision, robust and real-time 6 DOF visual servoing. The paper describes how to create a dataset simulating various perturbations (occlusions and lighting conditions) from a single real-world image of the scene. A convolutional neural network is fine-tuned using this dataset to estimate the relative pose between two images of the same scene. The output of the network is then employed in a visual servoing control scheme. The method converges robustly even in difficult real-world settings with strong lighting variations and occlusions.A positioning error of less than one millimeter is obtained in experiments with a 6 DOF robot.Comment: fixed authors lis

    RoboChain: A Secure Data-Sharing Framework for Human-Robot Interaction

    Full text link
    Robots have potential to revolutionize the way we interact with the world around us. One of their largest potentials is in the domain of mobile health where they can be used to facilitate clinical interventions. However, to accomplish this, robots need to have access to our private data in order to learn from these data and improve their interaction capabilities. Furthermore, to enhance this learning process, the knowledge sharing among multiple robot units is the natural step forward. However, to date, there is no well-established framework which allows for such data sharing while preserving the privacy of the users (e.g., the hospital patients). To this end, we introduce RoboChain - the first learning framework for secure, decentralized and computationally efficient data and model sharing among multiple robot units installed at multiple sites (e.g., hospitals). RoboChain builds upon and combines the latest advances in open data access and blockchain technologies, as well as machine learning. We illustrate this framework using the example of a clinical intervention conducted in a private network of hospitals. Specifically, we lay down the system architecture that allows multiple robot units, conducting the interventions at different hospitals, to perform efficient learning without compromising the data privacy.Comment: 7 pages, 6 figure

    Analyzing Modular CNN Architectures for Joint Depth Prediction and Semantic Segmentation

    Full text link
    This paper addresses the task of designing a modular neural network architecture that jointly solves different tasks. As an example we use the tasks of depth estimation and semantic segmentation given a single RGB image. The main focus of this work is to analyze the cross-modality influence between depth and semantic prediction maps on their joint refinement. While most previous works solely focus on measuring improvements in accuracy, we propose a way to quantify the cross-modality influence. We show that there is a relationship between final accuracy and cross-modality influence, although not a simple linear one. Hence a larger cross-modality influence does not necessarily translate into an improved accuracy. We find that a beneficial balance between the cross-modality influences can be achieved by network architecture and conjecture that this relationship can be utilized to understand different network design choices. Towards this end we propose a Convolutional Neural Network (CNN) architecture that fuses the state of the state-of-the-art results for depth estimation and semantic labeling. By balancing the cross-modality influences between depth and semantic prediction, we achieve improved results for both tasks using the NYU-Depth v2 benchmark.Comment: Accepted to ICRA 201
    corecore