61,482 research outputs found

    The Value of Information for Populations in Varying Environments

    Full text link
    The notion of information pervades informal descriptions of biological systems, but formal treatments face the problem of defining a quantitative measure of information rooted in a concept of fitness, which is itself an elusive notion. Here, we present a model of population dynamics where this problem is amenable to a mathematical analysis. In the limit where any information about future environmental variations is common to the members of the population, our model is equivalent to known models of financial investment. In this case, the population can be interpreted as a portfolio of financial assets and previous analyses have shown that a key quantity of Shannon's communication theory, the mutual information, sets a fundamental limit on the value of information. We show that this bound can be violated when accounting for features that are irrelevant in finance but inherent to biological systems, such as the stochasticity present at the individual level. This leads us to generalize the measures of uncertainty and information usually encountered in information theory

    Siting nuclear power plants in California: the near-term alternatives

    Get PDF
    There are many issues presently being debated concerning the generation and utilization of electric power in California. Some are peculiar to a specific area, such as the level of air quality and how it is influenced by fossil-fuel power plants. Others are of general applicability, such as high-level waste disposal from nuclear reactors, which is of global concern. It is the purpose of this study to investigate one particular aspect of the power problem. This is the question of the relative desirability of locating nuclear power plants at sites along the California coastline or at inland locations. In this introductory section, the basic problem will be outlined, including expected growth in electrical usage, and the nature of the controversy, which lies in the allocation of limited resources. In subsequent sections, the environmental impacts of coastal and inland plant siting will be discussed in general, without reference to specific locations. Conflicting demands for limited resources (namely, the coastline area and cooling water supply) will also be explored and evaluated. Finally, with the aid of this generalized information, a comparison will be made of the siting alternatives

    Complexity, BioComplexity, the Connectionist Conjecture and Ontology of Complexity\ud

    Get PDF
    This paper develops and integrates major ideas and concepts on complexity and biocomplexity - the connectionist conjecture, universal ontology of complexity, irreducible complexity of totality & inherent randomness, perpetual evolution of information, emergence of criticality and equivalence of symmetry & complexity. This paper introduces the Connectionist Conjecture which states that the one and only representation of Totality is the connectionist one i.e. in terms of nodes and edges. This paper also introduces an idea of Universal Ontology of Complexity and develops concepts in that direction. The paper also develops ideas and concepts on the perpetual evolution of information, irreducibility and computability of totality, all in the context of the Connectionist Conjecture. The paper indicates that the control and communication are the prime functionals that are responsible for the symmetry and complexity of complex phenomenon. The paper takes the stand that the phenomenon of life (including its evolution) is probably the nearest to what we can describe with the term ā€œcomplexityā€. The paper also assumes that signaling and communication within the living world and of the living world with the environment creates the connectionist structure of the biocomplexity. With life and its evolution as the substrate, the paper develops ideas towards the ontology of complexity. The paper introduces new complexity theoretic interpretations of fundamental biomolecular parameters. The paper also develops ideas on the methodology to determine the complexity of ā€œtrueā€ complex phenomena.\u

    Extended Inclusive Fitness Theory bridges Economics and Biology through a common understanding of Social Synergy

    Full text link
    Inclusive Fitness Theory (IFT) was proposed half a century ago by W.D. Hamilton to explain the emergence and maintenance of cooperation between individuals that allows the existence of society. Contemporary evolutionary ecology identified several factors that increase inclusive fitness, in addition to kin-selection, such as assortation or homophily, and social synergies triggered by cooperation. Here we propose an Extend Inclusive Fitness Theory (EIFT) that includes in the fitness calculation all direct and indirect benefits an agent obtains by its own actions, and through interactions with kin and with genetically unrelated individuals. This formulation focuses on the sustainable cost/benefit threshold ratio of cooperation and on the probability of agents sharing mutually compatible memes or genes. This broader description of the nature of social dynamics allows to compare the evolution of cooperation among kin and non-kin, intra- and inter-specific cooperation, co-evolution, the emergence of symbioses, of social synergies, and the emergence of division of labor. EIFT promotes interdisciplinary cross fertilization of ideas by allowing to describe the role for division of labor in the emergence of social synergies, providing an integrated framework for the study of both, biological evolution of social behavior and economic market dynamics.Comment: Bioeconomics, Synergy, Complexit

    To what degree are philosophy and the ecological niche concept necessary in the ecological theory and conservation?

    Get PDF
    Ecology as a field produces philosophical anxiety, largely because it differs in scientific structure from classical  physics. The hypothetical deductive models of classical physics are simple and predictive; general ecological models are predictably limited, as they refer to complex, multi-causal processes. Inattention to the conceptual  structure of ecology usually imposes difficulties for the application of ecological models. Imprecise descriptions of ecological niche have obstructed the development of collective definitions, causing confusion in the literature and complicating communication between theoretical ecologists, conservationists and decision and policy-makers. Intense, unprecedented erosion of biodiversity is typical of the Anthropocene, and knowledge of ecology may provide solutions to lessen the intensification of species losses. Concerned philosophers and ecologists have characterised ecological niche theory as less useful in practice; however, some theorists maintain that is has relevant applications for conservation. Species niche modelling, for instance, has gained traction in the literature; however, there are few examples of its successful application. Philosophical analysis of the structure, precision and constraints upon the definition of a ā€˜nicheā€™ may minimise the anxiety surrounding ecology, potentially facilitating communication between policy-makers and scientists within the various ecological subcultures. The results may enhance the success of conservation applications at both small and large scales

    Smart Grid Technologies in Europe: An Overview

    Get PDF
    The old electricity network infrastructure has proven to be inadequate, with respect to modern challenges such as alternative energy sources, electricity demand and energy saving policies. Moreover, Information and Communication Technologies (ICT) seem to have reached an adequate level of reliability and flexibility in order to support a new concept of electricity networkā€”the smart grid. In this work, we will analyse the state-of-the-art of smart grids, in their technical, management, security, and optimization aspects. We will also provide a brief overview of the regulatory aspects involved in the development of a smart grid, mainly from the viewpoint of the European Unio

    A metaphorical history of DNA patents

    Get PDF
    The aim of this paper is to retrace the history of genetic patents, analyzing the metaphors used in the public debate, in patent offices, and in courtrooms. I have identified three frames with corresponding metaphor clusters: the first is the industrial frame, built around the idea that DNA is a chemical; the second is the informational frame, assembled around the concept of genetic information; last is the soul frame, based on the idea that DNA is or contains the essence of the individual
    • ā€¦
    corecore