92 research outputs found

    비화자 요소에 강인한 화자 인식을 위한 딥러닝 기반 성문 추출

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 전기·정보공학부, 2021. 2. 김남수.Over the recent years, various deep learning-based embedding methods have been proposed and have shown impressive performance in speaker verification. However, as in most of the classical embedding techniques, the deep learning-based methods are known to suffer from severe performance degradation when dealing with speech samples with different conditions (e.g., recording devices, emotional states). Also, unlike the classical Gaussian mixture model (GMM)-based techniques (e.g., GMM supervector or i-vector), since the deep learning-based embedding systems are trained in a fully supervised manner, it is impossible for them to utilize unlabeled dataset when training. In this thesis, we propose a variational autoencoder (VAE)-based embedding framework, which extracts the total variability embedding and a representation for the uncertainty within the input speech distribution. Unlike the conventional deep learning-based embedding techniques (e.g., d-vector or x-vector), the proposed VAE-based embedding system is trained in an unsupervised manner, which enables the utilization of unlabeled datasets. Furthermore, in order to prevent the potential loss of information caused by the Kullback-Leibler divergence regularization term in the VAE-based embedding framework, we propose an adversarially learned inference (ALI)-based embedding technique. Both VAE- and ALI-based embedding techniques have shown great performance in terms of short duration speaker verification, outperforming the conventional i-vector framework. Additionally, we present a fully supervised training method for disentangling the non-speaker nuisance information from the speaker embedding. The proposed training scheme jointly extracts the speaker and nuisance attribute (e.g., recording channel, emotion) embeddings, and train them to have maximum information on their main-task while ensuring maximum uncertainty on their sub-task. Since the proposed method does not require any heuristic training strategy as in the conventional disentanglement techniques (e.g., adversarial learning, gradient reversal), optimizing the embedding network is relatively more stable. The proposed scheme have shown state-of-the-art performance in RSR2015 Part 3 dataset, and demonstrated its capability in efficiently disentangling the recording device and emotional information from the speaker embedding.최근 몇년간 다양한 딥러닝 기반 성문 추출 기법들이 제안되어 왔으며, 화자 인식에서 높은 성능을 보였다. 하지만 고전적인 성문 추출 기법에서와 마찬가지로, 딥러닝 기반 성문 추출 기법들은 서로 다른 환경 (e.g., 녹음 기기, 감정)에서 녹음된 음성들을 분석하는 과정에서 성능 저하를 겪는다. 또한 기존의 가우시안 혼합 모델 (Gaussian mixture model, GMM) 기반의 기법들 (e.g., GMM 슈퍼벡터, i-벡터)와 달리 딥러닝 기반 성문 추출 기법들은 교사 학습을 통하여 최적화되기에 라벨이 없는 데이터를 활용할 수 없다는 한계가 있다. 본 논문에서는 variational autoencoder (VAE) 기반의 성문 추출 기법을 제안하며, 해당 기법에서는 음성 분포 패턴을 요약하는 벡터와 음성 내의 불확실성을 표현하는 벡터를 추출한다. 기존의 딥러닝 기반 성문 추출 기법 (e.g., d-벡터, x-벡터)와는 달리, 제안하는 기법은 비교사 학습을 통하여 최적화 되기에 라벨이 없는 데이터를 활용할 수 있다. 더 나아가 VAE의 KL-divergence 제약 함수로 인한 정보 손실을 방지하기 위하여 adversarially learned inference (ALI) 기반의 성문 추출 기법을 추가적으로 제안한다. 제안한 VAE 및 ALI 기반의 성문 추출 기법은 짧은 음성에서의 화자 인증 실험에서 높은 성능을 보였으며, 기존의 i-벡터 기반의 기법보다 좋은 결과를 보였다. 또한 본 논문에서는 성문 벡터로부터 비 화자 요소 (e.g., 녹음 기기, 감정)에 대한 정보를 제거하는 학습법을 제안한다. 제안하는 기법은 화자 벡터와 비화자 벡터를 동시에 추출하며, 각 벡터는 자신의 주 목적에 대한 정보를 최대한 많이 유지하되, 부 목적에 대한 정보를 최소화하도록 학습된다. 기존의 비 화자 요소 정보 제거 기법들 (e.g., adversarial learning, gradient reversal)에 비하여 제안하는 기법은 휴리스틱한 학습 전략을 요하지 않기에, 보다 안정적인 학습이 가능하다. 제안하는 기법은 RSR2015 Part3 데이터셋에서 기존 기법들에 비하여 높은 성능을 보였으며, 성문 벡터 내의 녹음 기기 및 감정 정보를 억제하는데 효과적이었다.1. Introduction 1 2. Conventional embedding techniques for speaker recognition 7 2.1. i-vector framework 7 2.2. Deep learning-based speaker embedding 10 2.2.1. Deep embedding network 10 2.2.2. Conventional disentanglement methods 13 3. Unsupervised learning of total variability embedding for speaker verification with random digit strings 17 3.1. Introduction 17 3.2. Variational autoencoder 20 3.3. Variational inference model for non-linear total variability embedding 22 3.3.1. Maximum likelihood training 23 3.3.2. Non-linear feature extraction and speaker verification 25 3.4. Experiments 26 3.4.1. Databases 26 3.4.2. Experimental setup 27 3.4.3. Effect of the duration on the latent variable 28 3.4.4. Experiments with VAEs 30 3.4.5. Feature-level fusion of i-vector and latent variable 33 3.4.6. Score-level fusion of i-vector and latent variable 36 3.5. Summary 39 4. Adversarially learned total variability embedding for speaker recognition with random digit strings 41 4.1. Introduction 41 4.2. Adversarially learned inference 43 4.3. Adversarially learned feature extraction 45 4.3.1. Maximum likelihood criterion 47 4.3.2. Adversarially learned inference for non-linear i-vector extraction 49 4.3.3. Relationship to the VAE-based feature extractor 50 4.4. Experiments 51 4.4.1. Databases 51 4.4.2. Experimental setup 53 4.4.3. Effect of the duration on the latent variable 54 4.4.4. Speaker verification and identification with different utterance-level features 56 4.5. Summary 62 5. Disentangled speaker and nuisance attribute embedding for robust speaker verification 63 5.1. Introduction 63 5.2. Joint factor embedding 67 5.2.1. Joint factor embedding network architecture 67 5.2.2. Training for joint factor embedding 69 5.3. Experiments 71 5.3.1. Channel disentanglement experiments 71 5.3.2. Emotion disentanglement 82 5.3.3. Noise disentanglement 86 5.4. Summary 87 6. Conclusion 93 Bibliography 95 Abstract (Korean) 105Docto

    Large Margin GMM for discriminative speaker verifi cation

    Get PDF
    International audienceGaussian mixture models (GMM), trained using the generative cri- terion of maximum likelihood estimation, have been the most popular ap- proach in speaker recognition during the last decades. This approach is also widely used in many other classi cation tasks and applications. Generative learning in not however the optimal way to address classi cation problems. In this paper we rst present a new algorithm for discriminative learning of diagonal GMM under a large margin criterion. This algorithm has the ma- jor advantage of being highly e cient, which allow fast discriminative GMM training using large scale databases. We then evaluate its performances on a full NIST speaker veri cation task using NIST-SRE'2006 data. In particular, we use the popular Symmetrical Factor Analysis (SFA) for session variability compensation. The results show that our system outperforms the state-of-the- art approaches of GMM-SFA and the SVM-based one, GSL-NAP. Relative reductions of the Equal Error Rate of about 9.33% and 14.88% are respec- tively achieved over these systems

    Discriminative speaker recognition using Large Margin GMM

    Get PDF
    International audienceMost state-of-the-art speaker recognition systems are based on discriminative learning approaches. On the other hand, generative Gaussian mixture models (GMM) have been widely used in speaker recognition during the last decades. In an earlier work, we proposed an algorithm for discriminative training of GMM with diagonal covariances under a large margin criterion. In this paper, we propose an improvement of this algorithm which has the major advantage of being computationally highly efficient, thus well suited to handle large scale databases. We also develop a new strategy to detect and handle the outliers that occur in the training data. To evaluate the performances of our new algorithm, we carry out full NIST speaker identification and verification tasks using NIST-SRE'2006 data, in a Symmetrical Factor Analysis compensation scheme. The results show that our system significantly outperforms the traditional discriminative Support Vector Machines (SVM) based system of SVM-GMM supervectors, in the two speaker recognition tasks

    Local representations and random sampling for speaker verification

    Get PDF
    In text-independent speaker verification, studies focused on compensating intra-speaker variabilities at the modeling stage through the last decade. Intra-speaker variabilities may be due to channel effects, phonetic content or the speaker himself in the form of speaking style, emotional state, health or other similar factors. Joint Factor Analysis, Total Variability Space compensation, Nuisance Attribute Projection are some of the most successful approaches for inter-session variability compensation in the literature. In this thesis, we criticize the assumptions of low dimensionality of channel space in these methods and propose to partition the acoustic space into local regions. Intra-speaker variability compensation may be done in each local space separately. Two architectures are proposed depending on whether the subsequent modeling and scoring steps will also be done locally or globally. We have also focused on a particular component of intra-speaker variability, namely within-session variability. The main source of within-session variability is the differences in the phonetic content of speech segments in a single utterance. The variabilities in phonetic content may be either due to across acoustic event variabilities or due to differences in the actual realizations of the acoustic events. We propose a method to combat these variabilities through random sampling of training utterance. The method is shown to be effective both in short and long test utterances

    Discriminative and generative approaches for long- and short-term speaker characteristics modeling : application to speaker verification

    Get PDF
    The speaker verification problem can be stated as follows: given two speech recordings, determine whether or not they have been uttered by the same speaker. Most current speaker verification systems are based on Gaussian mixture models. This probabilistic representation allows to adequately model the complex distribution of the underlying speech feature parameters. It however represents an inadequate basis for discriminating between speakers, which is the key issue in the area of speaker verification. In the first part of this thesis, we attempt to overcome these difficulties by proposing to combine support vector machines, a well established discriminative modeling, with two generative approaches based on Gaussian mixture models. In the first generative approach, a target speaker is represented by a Gaussian mixture model corresponding to a Maximum A Posteriori adaptation of a large Gaussian mixture model, coined universal background model, to the target speaker data. The second generative approach is the Joint Factor Analysis that has become the state-of-the-art in the field of speaker verification during the last three years. The advantage of this technique is that it provides a framework of powerful tools for modeling the inter-speaker and channel variabilities. We propose and test several kernel functions that are integrated in the design of both previous combinations. The best results are obtained when the support vector machines are applied within a new space called the "total variability space", defined using the factor analysis. In this novel modeling approach, the channel effect is treated through a combination of linear discnminant analysis and kemel normalization based on the inverse of the within covariance matrix of the speaker. In the second part of this thesis, we present a new approach to modeling the speaker's longterm prosodic and spectral characteristics. This novel approach is based on continuous approximations of the prosodic and cepstral contours contained in a pseudo-syllabic segment of speech. Each of these contours is fitted to a Legendre polynomial, whose coefficients are modeled by a Gaussian mixture model. The joint factor analysis is used to treat the speaker and channel variabilities. Finally, we perform a scores fusion between systems based on long-term speaker characteristics with those described above that use short-term speaker features

    Forensic and Automatic Speaker Recognition System

    Get PDF
    Current Automatic Speaker Recognition (ASR) System has emerged as an important medium of confirmation of identity in many businesses, ecommerce applications, forensics and law enforcement as well. Specialists trained in criminological recognition can play out this undertaking far superior by looking at an arrangement of acoustic, prosodic, and semantic attributes which has been referred to as structured listening. An algorithmbased system has been developed in the recognition of forensic speakers by physics scientists and forensic linguists to reduce the probability of a contextual bias or pre-centric understanding of a reference model with the validity of an unknown audio sample and any suspicious individual. Many researchers are continuing to develop automatic algorithms in signal processing and machine learning so that improving performance can effectively introduce the speaker’s identity, where the automatic system performs equally with the human audience. In this paper, I examine the literature about the identification of speakers by machines and humans, emphasizing the key technical speaker pattern emerging for the automatic technology in the last decade. I focus on many aspects of automatic speaker recognition (ASR) systems, including speaker-specific features, speaker models, standard assessment data sets, and performance metric

    Speaker Recognition

    Get PDF

    Analysis of I-Vector framework for Speaker Identification in TV-shows

    Get PDF
    International audienceInspired from the Joint Factor Analysis, the I-vector-based analysis has become the most popular and state-of-the-art framework for the speaker verification task. Mainly applied within the NIST/SRE evaluation campaigns, many studies have been proposed to improve more and more performance of speaker verification systems. Nevertheless, while the i-vector framework has been used in other speech processing fields like language recognition, a very few studies have been reported for the speaker identification task on TV shows. This work was done in the REPERE challenge context, focused on the people recognition task in multimodal conditions (audio, video, text) from TV show corpora. Moreover, the challenge participants are invited for providing systems for monomodal tasks, like speaker identification. The application of the i-vector framework is investi-gatedthrough different points of views: (1) some of the i-vector based approaches are compared, (2) a specific i-vector extraction protocol is proposed in order to deal with widely varying amounts of training data among speaker population, (3) the joint use of both speaker diarization and identification is finally analyzed. Based on a 533 speaker dictionary, this joint system wins the monomodal speaker identification task of the 2014 REPERE challenge

    Physiologically-Motivated Feature Extraction Methods for Speaker Recognition

    Get PDF
    Speaker recognition has received a great deal of attention from the speech community, and significant gains in robustness and accuracy have been obtained over the past decade. However, the features used for identification are still primarily representations of overall spectral characteristics, and thus the models are primarily phonetic in nature, differentiating speakers based on overall pronunciation patterns. This creates difficulties in terms of the amount of enrollment data and complexity of the models required to cover the phonetic space, especially in tasks such as identification where enrollment and testing data may not have similar phonetic coverage. This dissertation introduces new features based on vocal source characteristics intended to capture physiological information related to the laryngeal excitation energy of a speaker. These features, including RPCC, GLFCC and TPCC, represent the unique characteristics of speech production not represented in current state-of-the-art speaker identification systems. The proposed features are evaluated through three experimental paradigms including cross-lingual speaker identification, cross song-type avian speaker identification and mono-lingual speaker identification. The experimental results show that the proposed features provide information about speaker characteristics that is significantly different in nature from the phonetically-focused information present in traditional spectral features. The incorporation of the proposed glottal source features offers significant overall improvement to the robustness and accuracy of speaker identification tasks
    corecore