1,720 research outputs found

    The Length of Subset Reachability in Nondeterministic Automata

    Get PDF
    We study subset reachability in nondeterministic finite automata and look for bounds of the length of the shortest reaching words for automata with a fixed number of states. We obtain such bounds for nondeterministic automata over 2-letter, 3-letter and arbitrary alphabets. © 2008 Elsevier B.V. All rights reserved

    The Length of Subset Reachability in Nondeterministic Automata

    Full text link
    We study subset reachability in nondeterministic finite automata and look for bounds of the length of the shortest reaching words for automata with a fixed number of states. We obtain such bounds for nondeterministic automata over 2-letter, 3-letter and arbitrary alphabets. © 2008 Elsevier B.V. All rights reserved

    Completeness Results for Parameterized Space Classes

    Full text link
    The parameterized complexity of a problem is considered "settled" once it has been shown to lie in FPT or to be complete for a class in the W-hierarchy or a similar parameterized hierarchy. Several natural parameterized problems have, however, resisted such a classification. At least in some cases, the reason is that upper and lower bounds for their parameterized space complexity have recently been obtained that rule out completeness results for parameterized time classes. In this paper, we make progress in this direction by proving that the associative generability problem and the longest common subsequence problem are complete for parameterized space classes. These classes are defined in terms of different forms of bounded nondeterminism and in terms of simultaneous time--space bounds. As a technical tool we introduce a "union operation" that translates between problems complete for classical complexity classes and for W-classes.Comment: IPEC 201

    Reachability in Higher-Order-Counters

    Full text link
    Higher-order counter automata (\HOCS) can be either seen as a restriction of higher-order pushdown automata (\HOPS) to a unary stack alphabet, or as an extension of counter automata to higher levels. We distinguish two principal kinds of \HOCS: those that can test whether the topmost counter value is zero and those which cannot. We show that control-state reachability for level kk \HOCS with 00-test is complete for \mbox{(k2)(k-2)}-fold exponential space; leaving out the 00-test leads to completeness for \mbox{(k2)(k-2)}-fold exponential time. Restricting \HOCS (without 00-test) to level 22, we prove that global (forward or backward) reachability analysis is \PTIME-complete. This enhances the known result for pushdown systems which are subsumed by level 22 \HOCS without 00-test. We transfer our results to the formal language setting. Assuming that \PTIME \subsetneq \PSPACE \subsetneq \mathbf{EXPTIME}, we apply proof ideas of Engelfriet and conclude that the hierarchies of languages of \HOPS and of \HOCS form strictly interleaving hierarchies. Interestingly, Engelfriet's constructions also allow to conclude immediately that the hierarchy of collapsible pushdown languages is strict level-by-level due to the existing complexity results for reachability on collapsible pushdown graphs. This answers an open question independently asked by Parys and by Kobayashi.Comment: Version with Full Proofs of a paper that appears at MFCS 201

    Lazy Probabilistic Model Checking without Determinisation

    Get PDF
    The bottleneck in the quantitative analysis of Markov chains and Markov decision processes against specifications given in LTL or as some form of nondeterministic B\"uchi automata is the inclusion of a determinisation step of the automaton under consideration. In this paper, we show that full determinisation can be avoided: subset and breakpoint constructions suffice. We have implemented our approach---both explicit and symbolic versions---in a prototype tool. Our experiments show that our prototype can compete with mature tools like PRISM.Comment: 38 pages. Updated version for introducing the following changes: - general improvement on paper presentation; - extension of the approach to avoid full determinisation; - added proofs for such an extension; - added case studies; - updated old case studies to reflect the added extensio

    The Planning Spectrum - One, Two, Three, Infinity

    Full text link
    Linear Temporal Logic (LTL) is widely used for defining conditions on the execution paths of dynamic systems. In the case of dynamic systems that allow for nondeterministic evolutions, one has to specify, along with an LTL formula f, which are the paths that are required to satisfy the formula. Two extreme cases are the universal interpretation A.f, which requires that the formula be satisfied for all execution paths, and the existential interpretation E.f, which requires that the formula be satisfied for some execution path. When LTL is applied to the definition of goals in planning problems on nondeterministic domains, these two extreme cases are too restrictive. It is often impossible to develop plans that achieve the goal in all the nondeterministic evolutions of a system, and it is too weak to require that the goal is satisfied by some execution. In this paper we explore alternative interpretations of an LTL formula that are between these extreme cases. We define a new language that permits an arbitrary combination of the A and E quantifiers, thus allowing, for instance, to require that each finite execution can be extended to an execution satisfying an LTL formula (AE.f), or that there is some finite execution whose extensions all satisfy an LTL formula (EA.f). We show that only eight of these combinations of path quantifiers are relevant, corresponding to an alternation of the quantifiers of length one (A and E), two (AE and EA), three (AEA and EAE), and infinity ((AE)* and (EA)*). We also present a planning algorithm for the new language that is based on an automata-theoretic approach, and study its complexity

    Operations on Automata with All States Final

    Full text link
    We study the complexity of basic regular operations on languages represented by incomplete deterministic or nondeterministic automata, in which all states are final. Such languages are known to be prefix-closed. We get tight bounds on both incomplete and nondeterministic state complexity of complement, intersection, union, concatenation, star, and reversal on prefix-closed languages.Comment: In Proceedings AFL 2014, arXiv:1405.527
    corecore