966 research outputs found

    Minimization of Handoff Failure Probability for Next-Generation Wireless Systems

    Full text link
    During the past few years, advances in mobile communication theory have enabled the development and deployment of different wireless technologies, complementary to each other. Hence, their integration can realize a unified wireless system that has the best features of the individual networks. Next-Generation Wireless Systems (NGWS) integrate different wireless systems, each of which is optimized for some specific services and coverage area to provide ubiquitous communications to the mobile users. In this paper, we propose to enhance the handoff performance of mobile IP in wireless IP networks by reducing the false handoff probability in the NGWS handoff management protocol. Based on the information of false handoff probability, we analyze its effect on mobile speed and handoff signaling delay.Comment: 16 Page

    Integrated Support for Handoff Management and Context-Awareness in Heterogeneous Wireless Networks

    Get PDF
    The overwhelming success of mobile devices and wireless communications is stressing the need for the development of mobility-aware services. Device mobility requires services adapting their behavior to sudden context changes and being aware of handoffs, which introduce unpredictable delays and intermittent discontinuities. Heterogeneity of wireless technologies (Wi-Fi, Bluetooth, 3G) complicates the situation, since a different treatment of context-awareness and handoffs is required for each solution. This paper presents a middleware architecture designed to ease mobility-aware service development. The architecture hides technology-specific mechanisms and offers a set of facilities for context awareness and handoff management. The architecture prototype works with Bluetooth and Wi-Fi, which today represent two of the most widespread wireless technologies. In addition, the paper discusses motivations and design details in the challenging context of mobile multimedia streaming applications

    Mobile IP movement detection optimisations in 802.11 wireless LANs

    Get PDF
    The IEEE 802.11 standard was developed to support the establishment of highly flexible wireless local area networks (wireless LANs). However, when an 802.11 mobile node moves from a wireless LAN on one IP network to a wireless LAN on a different network, an IP layer handoff occurs. During the handoff, the mobile node's IP settings must be updated in order to re-establish its IP connectivity at the new point of attachment. The Mobile IP protocol allows a mobile node to perform an IP handoff without breaking its active upper-layer sessions. Unfortunately, these handoffs introduce large latencies into a mobile node's traffic, during which packets are lost. As a result, the mobile node's upper-layer sessions and applications suffer significant disruptions due to this handoff latency. One of the main components of a Mobile IP handoff is the movement detection process, whereby a mobile node senses that it is attached to a new IP network. This procedure contributes significantly to the total Mobile IP handover latency and resulting disruption. This study investigates different mechanisms that aim to lower movement detection delays and thereby improve Mobile IP performance. These mechanisms are considered specifically within the context of 802.11 wireless LANs. In general, a mobile node detects attachment to a new network when a periodic IP level broadcast (advertisement) is received from that network. It will be shown that the elimination of this dependence on periodic advertisements, and the reliance instead on external information from the 802.11 link layer, results in both faster and more efficient movement detection. Furthermore, a hybrid system is proposed that incorporates several techniques to ensure that movement detection performs reliably within a variety of different network configurations. An evaluation framework is designed and implemented that supports the assessment of a wide range of movement detection mechanisms. This test bed allows Mobile IP handoffs to be analysed in detail, with specific focus on the movement detection process. The performance of several movement detection optimisations is compared using handoff latency and packet loss as metrics. The evaluation framework also supports real-time Voice over IP (VoIP) traffic. This is used to ascertain the effects that different movement detection techniques have on the output voice quality. These evaluations not only provide a quantitative performance analysis of these movement detection mechanisms, but also a qualitative assessment based on a VoIP application

    MeshScan: a Fast and Efficient Handoff Scheme for IEEE 802.11 Wireless Mesh Networks

    Get PDF
    As a next generation network solution, Wireless Mesh Networks (WMN) provides fast Internet access to a large area, which is from university campus to city scale. In order to provide an uninterrupted Internet experience to a mobile client, a process called handoff is required to maintain the network connection from one Mesh Node (MN) to another MN. Ideally, handoff should be completely transparent to mobile users. A critical application like VoIP will require a handoff capability that transfers a call from one mesh node (MN) to another in less than 50 msec. However the current IEEE 802.11 standards do not address the handoff well. Studies have revealed that standard handoff on IEEE 802.11 WLANs incurs a latency of the order of hundreds of milliseconds to several seconds. Moreover, the discovery step in the handoff process accounts for more than 99% of this latency. The study addresses the latency in the discovery step by introducing an efficient and powerful client-side scan technique called MeshScan which replaces the discovery step with a unicast scan that transmits Authentication Request frames to potential MNs. A prototype of MeshScan has been developed based on the MadWifi WLAN driver on Linux operating systems. The feasibility of MeshScan to support fast handoff in WMNs has been demonstrated through extensive computer simulations and experiments under same given conditions. The results from the simulations and experiments show that the latency associated with handoff can be reduced from seconds to a few milliseconds by using the MeshScan technique. Furthermore, it is shown that MeshScan can continue to function effectively even under heavy traffic loads

    EVM as generic QoS trigger for heterogeneous wieless overlay network

    Full text link
    Fourth Generation (4G) Wireless System will integrate heterogeneous wireless overlay systems i.e. interworking of WLAN/ GSM/ CDMA/ WiMAX/ LTE/ etc with guaranteed Quality of Service (QoS) and Experience (QoE).QoS(E) vary from network to network and is application sensitive. User needs an optimal mobility solution while roaming in Overlaid wireless environment i.e. user could seamlessly transfer his session/ call to a best available network bearing guaranteed Quality of Experience. And If this Seamless transfer of session is executed between two networks having different access standards then it is called Vertical Handover (VHO). Contemporary VHO decision algorithms are based on generic QoS metrics viz. SNR, bandwidth, jitter, BER and delay. In this paper, Error Vector Magnitude (EVM) is proposed to be a generic QoS trigger for VHO execution. EVM is defined as the deviation of inphase/ quadrature (I/Q) values from ideal signal states and thus provides a measure of signal quality. In 4G Interoperable environment, OFDM is the leading Modulation scheme (more prone to multi-path fading). EVM (modulation error) properly characterises the wireless link/ channel for accurate VHO decision. EVM depends on the inherent transmission impairments viz. frequency offset, phase noise, non-linear-impairment, skewness etc. for a given wireless link. Paper provides an insight to the analytical aspect of EVM & measures EVM (%) for key management subframes like association/re-association/disassociation/ probe request/response frames. EVM relation is explored for different possible NAV-Network Allocation Vectors (frame duration). Finally EVM is compared with SNR, BER and investigation concludes EVM as a promising QoS trigger for OFDM based emerging wireless standards.Comment: 12 pages, 7 figures, IJWMN 2010 august issue vol. 2, no.
    corecore