9 research outputs found

    The principal join property in demi-p-lattices

    Get PDF

    Dicomplemented Lattices: A Contextual Generalization of Boolean Algebras

    Get PDF
    Das Ziel dieser Arbeit ist es die mathematische Theorie der Begriffsalgebren zu entwickeln. Wir betrachten dabei hauptsaechlich das Repraesentationsproblem dieser vor Kurzem eingefuehrten Strukturen. Motiviert durch die Suche nach einer geeigneten Negation sind die Begriffsalgebren entstanden. Sie sind nicht nur fuer die Philosophie oder die Wissensrepraesentation von Interesse, sondern auch fuer andere Felder, wie zum Beispiel Logik oder Linguistik. Das Problem Negationen geeignet einzufuehren, ist sicher eines der aeltesten der wissenschaftlichen oder philosophischen Gemeinschaft und erregt auch zur Zeit die Aufmerksamkeit vieler Wissenschaftler. Verschiedene Typen von Logik (die sich sehr stark durch die eigefuehrte Negation unterscheiden) unterstreichen die Wichtigkeit dieser Untersuchungen. In dieser Arbeit beschaeftigen wir uns hauptsaechlich mit der kontextuellen Logik, eine Herangehensweise der Formalen Begriffsanalyse, basierend auf der Idee, den Begriff als Einheit des Denkens aufzufassen.The aim of this investigation is to develop a mathematical theory of concept algebras. We mainly consider the representation problem for this recently introduced class of structures. Motivated by the search of a "negation" on formal concepts, "concept algebras" are of considerable interest not only in Philosophy or Knowledge Representation, but also in other fields as Logic or Linguistics. The problem of negation is surely one of the oldest problems of the scientific and philosophic community, and still attracts the attention of many researchers. Various types of Logic (defined according to the behaviour of the corresponding negation) can attest this affirmation. In this thesis we focus on "Contextual Logic", a Formal Concept Analysis approach, based on concepts as units of thought

    Structural and universal completeness in algebra and logic

    Full text link
    In this work we study the notions of structural and universal completeness both from the algebraic and logical point of view. In particular, we provide new algebraic characterizations of quasivarieties that are actively and passively universally complete, and passively structurally complete. We apply these general results to varieties of bounded lattices and to quasivarieties related to substructural logics. In particular we show that a substructural logic satisfying weakening is passively structurally complete if and only if every classical contradiction is explosive in it. Moreover, we fully characterize the passively structurally complete varieties of MTL-algebras, i.e., bounded commutative integral residuated lattices generated by chains.Comment: This is a preprin

    Remarks on the order-theoretical and algebraic properties of quantum structures

    Get PDF
    This thesis is concerned with the analysis of common features and distinguishing traits of algebraic structures arising in the sharp as well as in the unsharp approaches to quan- tum theory both from an order-theoretical and an algebraic perspective. Firstly, we recall basic notions of order theory and universal algebra. Furthermore, we introduce fundamental concepts and facts concerning the algebraic structures we deal with, from orthomodular lattices to e↵ect algebras, MV algebras and their non-commutative gener- alizations. Finally, we present Basic algebras as a general framework in which (lattice) quantum structures can be studied from an universal algebraic perspective. Taking advantage of the categorical (term-)equivalence between Basic algebras and Lukasiewicz near semirings, in Chapter 3 we provide a structure theory for the lat- ter in order to highlight that, if turned into near-semirings, orthomodular lattices, MV algebras and Basic algebras determine ideals amenable of a common simple description. As a consequence, we provide a rather general Cantor-Bernstein Theorem for involutive left-residuable near semirings. In Chapter 4, we show that lattice pseudoe↵ect algebras, i.e. non-commutative gener- alizations of lattice e↵ect algebras can be represented as near semirings. One one side, this result allows the arithmetical treatment of pseudoe↵ect algebras as total structures; on the other, it shows that near semirings framework can be really seen as the common “ground” on which (commutative and non commutative) quantum structures can be studied and compared. In Chapter 5 we show that modular paraorthomodular lattices can be represented as semiring-like structures by first converting them into (left-) residuated structures. To this aim, we show that any modular bonded lattice A with antitone involution satisfying a strengthened form of regularity can be turned into a left-residuated groupoid. This condition turns out to be a sucient and necessary for a Kleene lattice to be equipped with a Boolean-like material implication. Finally, in order to highlight order theoretical peculiarities of orthomodular quantum structures, in Chapter 6 we weaken the notion of orthomodularity for posets by introduc- ing the concept of the generalized orthomodularity property (GO-property) expressed in terms of LU-operators. This seemingly mild generalization of orthomodular posets and its order theoretical analysis yields rather strong applications to e↵ect algebras, and orthomodular structures. Also, for several classes of orthoalgebras, the GO-property yields a completely order-theoretical characterization of the coherence law and, in turn, of proper orthoalgebras

    Subject Index Volumes 1–200

    Get PDF

    Acta Scientiarum Mathematicarum : Tomus 38. Fasc. 3-4.

    Get PDF

    An Abstract Algebraic Theory of L-Fuzzy Relations for Relational Databases

    Get PDF
    Classical relational databases lack proper ways to manage certain real-world situations including imprecise or uncertain data. Fuzzy databases overcome this limitation by allowing each entry in the table to be a fuzzy set where each element of the corresponding domain is assigned a membership degree from the real interval [0…1]. But this fuzzy mechanism becomes inappropriate in modelling scenarios where data might be incomparable. Therefore, we become interested in further generalization of fuzzy database into L-fuzzy database. In such a database, the characteristic function for a fuzzy set maps to an arbitrary complete Brouwerian lattice L. From the query language perspectives, the language of fuzzy database, FSQL extends the regular Structured Query Language (SQL) by adding fuzzy specific constructions. In addition to that, L-fuzzy query language LFSQL introduces appropriate linguistic operations to define and manipulate inexact data in an L-fuzzy database. This research mainly focuses on defining the semantics of LFSQL. However, it requires an abstract algebraic theory which can be used to prove all the properties of, and operations on, L-fuzzy relations. In our study, we show that the theory of arrow categories forms a suitable framework for that. Therefore, we define the semantics of LFSQL in the abstract notion of an arrow category. In addition, we implement the operations of L-fuzzy relations in Haskell and develop a parser that translates algebraic expressions into our implementation
    corecore