78 research outputs found

    Complexity of equivalence relations and preorders from computability theory

    Full text link
    We study the relative complexity of equivalence relations and preorders from computability theory and complexity theory. Given binary relations R,SR, S, a componentwise reducibility is defined by R\le S \iff \ex f \, \forall x, y \, [xRy \lra f(x) Sf(y)]. Here ff is taken from a suitable class of effective functions. For us the relations will be on natural numbers, and ff must be computable. We show that there is a Π1\Pi_1-complete equivalence relation, but no Πk\Pi k-complete for k≥2k \ge 2. We show that Σk\Sigma k preorders arising naturally in the above-mentioned areas are Σk\Sigma k-complete. This includes polynomial time mm-reducibility on exponential time sets, which is Σ2\Sigma 2, almost inclusion on r.e.\ sets, which is Σ3\Sigma 3, and Turing reducibility on r.e.\ sets, which is Σ4\Sigma 4.Comment: To appear in J. Symb. Logi

    Computable de Finetti measures

    Full text link
    We prove a computable version of de Finetti's theorem on exchangeable sequences of real random variables. As a consequence, exchangeable stochastic processes expressed in probabilistic functional programming languages can be automatically rewritten as procedures that do not modify non-local state. Along the way, we prove that a distribution on the unit interval is computable if and only if its moments are uniformly computable.Comment: 32 pages. Final journal version; expanded somewhat, with minor corrections. To appear in Annals of Pure and Applied Logic. Extended abstract appeared in Proceedings of CiE '09, LNCS 5635, pp. 218-23

    On the Relation Between Representations and Computability

    Full text link
    Computability and decidability are intimately linked problems which have interested computer scientists and mathematicians for a long time, especially during the last century. Work performed by Turing, Church, Godel, Post, Kleene and other authors considered the questions "What is computable?" and "What is an algorithm?". Very important results with plenty of implica- tions were obtained, such as the halting theorem [12], the several solutions to the Entscheidungsproblem [12, 5], the Church-Turing thesis [12] or Godel's incompleteness theorem. Further work was performed on topics which as of today have remained purely theoretical but which have o ered us a great understanding of computability and related questions. Some of this work in- cludes the one related to degrees of recursive unsolvability [1] [7] and Rice's theorem [11]. Several formalisms were described and compared, some of the most im- portant ones being Turing machines and -calculus. These formalisms were mathematical constructions which allowed the study of the concept of com- putation or calculation and all of its related questions. We have found that an often ignored detail and, as we show, important aspect of computability is related to representation. In particular, we show that the computability of an abstract problem can only be considered once a choice of representation has been made. We inquire to what extent this is essential and what e ects it may have and in what manner. We o er a wide discussion on its implications, a formalisation of these considerations and some important results deriving from these formalisations. In particular, the main result of the work is a proof that computably enumerable repre- sentations cannot be strictly stronger or weaker than other representations. We also discuss the Church-Turing thesis with particular interest, inquiring about its deep meaning and the actual facts and false assumptions related to it. Furthermore, we consider the relationship between representation and the so-called representation degrees and the degrees of recursive unsolvability de- rived from the concept of oracle machine. We show that these two concepts o er parallel hierarchies which are very similar in their construction but quite di erent in their essential meaning and properties.La computabilidad y la decidibilidad son problemas estrechamente relacionados que han interesado ampliamente a informáticos y matemáticos, especialmente a lo largo del ultimo siglo. Los trabajos realizados por Turing, Church, Godel, Post, Kleene y otros autores se planteaban las preguntas "Qué es computable?" y "Qué es un algoritmo?". Se lograron muchos resultados importantes con multitud de implicaciones, como el teorema de la parada [12], la solución al Entscheidungsproblem [12, 5], la hipótesis de Church-Turing [12] o el teorema de incompletidud de Godel. Gran cantidad del trabajo posterior se realizó en relación a otros temas que han permanecido hasta hoy en el campo de la teoría pero que nos han permitido entender en mayor medida la computabilidad y problemas relacionados. Por ejemplo, el relacionado con los grados de indecibilidad [1] [7] y el teorema de Rice [11]. Varios formalismos fueron descritos y comparados, algunos de los más importantes son las máquinas de Turing y el cálculo lambda. Estos formalismos constituían construcciones matemáticas que permitían el estudio del concepto de computación o cálculo y todas las preguntas relacionadas. Un aspecto comúnmente ignorado y relevante de la computabilidad está relacionado con la representación. En particular, percatamos que la com- putabilidad de un problema abstracto sólo puede ser considerada una vez se ha producido una elección de representación. Nos preguntamos hasta qué punto esto es esencial y qué efectos puede tener y de qué manera. Ofrecemos una amplia discusión sobre sus implicaciones, una formalización de estas consideraciones y algunos resultados importantes derivados de las mismas. En particular, el resultado principal del trabajo es una demostración de que las representaciones computacionalmente enumerables no pueden ser más fuertes o más débiles que otras. Realizamos una discusión especialmente enfrascada en relación a la tesis de Church-Turing, su significado más profundo y los hechos y falacias que giran en torno a ella. Además, consideramos la relación existente entre la representación y los llamados grados de representación, y los grados de indecibilidad derivados del concepto de máquina oráculo. Demostramos que estos dos conceptos ofrecen jerarquías paralelas con una construcción muy similar pero notablemente distintas en su significado esencial y sus propiedades

    First Order Theories of Some Lattices of Open Sets

    Full text link
    We show that the first order theory of the lattice of open sets in some natural topological spaces is mm-equivalent to second order arithmetic. We also show that for many natural computable metric spaces and computable domains the first order theory of the lattice of effectively open sets is undecidable. Moreover, for several important spaces (e.g., Rn\mathbb{R}^n, n≥1n\geq1, and the domain PωP\omega) this theory is mm-equivalent to first order arithmetic

    Spectral Representation of Some Computably Enumerable Sets With an Application to Quantum Provability

    Full text link
    We propose a new type of quantum computer which is used to prove a spectral representation for a class F of computable sets. When S in F codes the theorems of a formal system, the quantum computer produces through measurement all theorems and proofs of the formal system. We conjecture that the spectral representation is valid for all computably enumerable sets. The conjecture implies that the theorems of a general formal system, like Peano Arithmetic or ZFC, can be produced through measurement; however, it is unlikely that the quantum computer can produce the proofs as well, as in the particular case of F. The analysis suggests that showing the provability of a statement is different from writing up the proof of the statement.Comment: 12 pages, LaTeX2e, no figure

    Computably Based Locally Compact Spaces

    Full text link
    ASD (Abstract Stone Duality) is a re-axiomatisation of general topology in which the topology on a space is treated, not as an infinitary lattice, but as an exponential object of the same category as the original space, with an associated lambda-calculus. In this paper, this is shown to be equivalent to a notion of computable basis for locally compact sober spaces or locales, involving a family of open subspaces and accompanying family of compact ones. This generalises Smyth's effectively given domains and Jung's strong proximity lattices. Part of the data for a basis is the inclusion relation of compact subspaces within open ones, which is formulated in locale theory as the way-below relation on a continuous lattice. The finitary properties of this relation are characterised here, including the Wilker condition for the cover of a compact space by two open ones. The real line is used as a running example, being closely related to Scott's domain of intervals. ASD does not use the category of sets, but the full subcategory of overt discrete objects plays this role; it is an arithmetic universe (pretopos with lists). In particular, we use this subcategory to translate computable bases for classical spaces into objects in the ASD calculus.Comment: 70pp, LaTeX2e, uses diagrams.sty; Accepted for "Logical Methods in Computer Science" LMCS-2004-19; see http://www.cs.man.ac.uk/~pt/ASD for related papers. ACM-class: F.4.
    • …
    corecore