169 research outputs found

    Multiplicative-Additive Focusing for Parsing as Deduction

    Full text link
    Spurious ambiguity is the phenomenon whereby distinct derivations in grammar may assign the same structural reading, resulting in redundancy in the parse search space and inefficiency in parsing. Understanding the problem depends on identifying the essential mathematical structure of derivations. This is trivial in the case of context free grammar, where the parse structures are ordered trees; in the case of categorial grammar, the parse structures are proof nets. However, with respect to multiplicatives intrinsic proof nets have not yet been given for displacement calculus, and proof nets for additives, which have applications to polymorphism, are involved. Here we approach multiplicative-additive spurious ambiguity by means of the proof-theoretic technique of focalisation.Comment: In Proceedings WoF'15, arXiv:1511.0252

    From Proof Nets to the Free *-Autonomous Category

    Get PDF
    In the first part of this paper we present a theory of proof nets for full multiplicative linear logic, including the two units. It naturally extends the well-known theory of unit-free multiplicative proof nets. A linking is no longer a set of axiom links but a tree in which the axiom links are subtrees. These trees will be identified according to an equivalence relation based on a simple form of graph rewriting. We show the standard results of sequentialization and strong normalization of cut elimination. In the second part of the paper we show that the identifications enforced on proofs are such that the class of two-conclusion proof nets defines the free *-autonomous category.Comment: LaTeX, 44 pages, final version for LMCS; v2: updated bibliograph

    Bracket induction for Lambek calculus with bracket modalities

    Get PDF
    Relativisation involves dependencies which, although unbounded, are constrained with respect to certain island domains. The Lambek calculus L can provide a very rudimentary account of relativisation limited to unbounded peripheral extraction; the Lambek calculus with bracket modalities Lb can further condition this account according to island domains. However in naïve parsing/theorem-proving by backward chaining sequent proof search for Lb the bracketed island domains, which can be indefinitely nested, have to be specified in the linguistic input. In realistic parsing word order is given but such hierarchical bracketing structure cannot be assumed to be given. In this paper we show how parsing can be realised which induces the bracketing structure in backward chaining sequent proof search with Lb

    Hybrid Type-Logical Grammars, First-Order Linear Logic and the Descriptive Inadequacy of Lambda Grammars

    Full text link
    In this article we show that hybrid type-logical grammars are a fragment of first-order linear logic. This embedding result has several important consequences: it not only provides a simple new proof theory for the calculus, thereby clarifying the proof-theoretic foundations of hybrid type-logical grammars, but, since the translation is simple and direct, it also provides several new parsing strategies for hybrid type-logical grammars. Second, NP-completeness of hybrid type-logical grammars follows immediately. The main embedding result also sheds new light on problems with lambda grammars/abstract categorial grammars and shows lambda grammars/abstract categorial grammars suffer from problems of over-generation and from problems at the syntax-semantics interface unlike any other categorial grammar
    corecore