3,228 research outputs found

    Lagrangian Relaxation and Partial Cover

    Full text link
    Lagrangian relaxation has been used extensively in the design of approximation algorithms. This paper studies its strengths and limitations when applied to Partial Cover.Comment: 20 pages, extended abstract appeared in STACS 200

    Playing with Duality: An Overview of Recent Primal-Dual Approaches for Solving Large-Scale Optimization Problems

    Full text link
    Optimization methods are at the core of many problems in signal/image processing, computer vision, and machine learning. For a long time, it has been recognized that looking at the dual of an optimization problem may drastically simplify its solution. Deriving efficient strategies which jointly brings into play the primal and the dual problems is however a more recent idea which has generated many important new contributions in the last years. These novel developments are grounded on recent advances in convex analysis, discrete optimization, parallel processing, and non-smooth optimization with emphasis on sparsity issues. In this paper, we aim at presenting the principles of primal-dual approaches, while giving an overview of numerical methods which have been proposed in different contexts. We show the benefits which can be drawn from primal-dual algorithms both for solving large-scale convex optimization problems and discrete ones, and we provide various application examples to illustrate their usefulness

    Exact algorithms for the matrix bid auction.

    Get PDF
    In a combinatorial auction, multiple items are for sale simultaneously to a set of buyers. These buyers are allowed to place bids on subsets of the available items. A special kind of combinatorial auction is the so-called matrix bid auction, which was developed by Day (2004). The matrix bid auction imposes restrictions on what a bidder can bid for a subsets of the items. This paper focusses on the winner determination problem, i.e. deciding which bidders should get what items. The winner determination problem of a general combinatorial auction is NP-hard and inapproximable. We discuss the computational complexity of the winner determination problem for a special case of the matrix bid auction. We present two mathematical programming formulations for the general matrix bid auction winner determination problem. Based on one of these formulations, we develop two branch-and-price algorithms to solve the winner determination problem. Finally, we present computational results for these algorithms and compare them with results from a branch-and-cut approach based on Day & Raghavan (2006).Algorithms; Bids; Branch-and-price; Combinatorial auction; Complexity; Computational complexity; Exact algorithm; Mathematical programming; Matrix; Matrix bids; Research; Winner determination;
    corecore