33 research outputs found

    The LIFEdb database in 2006

    Get PDF
    LIFEdb () integrates data from large-scale functional genomics assays and manual cDNA annotation with bioinformatics gene expression and protein analysis. New features of LIFEdb include (i) an updated user interface with enhanced query capabilities, (ii) a configurable output table and the option to download search results in XML, (iii) the integration of data from cell-based screening assays addressing the influence of protein-overexpression on cell proliferation and (iv) the display of the relative expression (‘Electronic Northern’) of the genes under investigation using curated gene expression ontology information. LIFEdb enables researchers to systematically select and characterize genes and proteins of interest, and presents data and information via its user-friendly web-based interface

    The LIFEdb database in 2006

    Get PDF
    LIFEdb () integrates data from large-scale functional genomics assays and manual cDNA annotation with bioinformatics gene expression and protein analysis. New features of LIFEdb include (i) an updated user interface with enhanced query capabilities, (ii) a configurable output table and the option to download search results in XML, (iii) the integration of data from cell-based screening assays addressing the influence of protein-overexpression on cell proliferation and (iv) the display of the relative expression (‘Electronic Northern’) of the genes under investigation using curated gene expression ontology information. LIFEdb enables researchers to systematically select and characterize genes and proteins of interest, and presents data and information via its user-friendly web-based interface

    Towards defining the nuclear proteome

    Get PDF
    Direct evidence is reported for 2,568 mammalian proteins within the nuclear proteome, consisting of at least 14% of the entire proteome

    Random subwindows and extremely randomized trees for image classification in cell biology

    Get PDF
    Background: With the improvements in biosensors and high-throughput image acquisition technologies, life science laboratories are able to perform an increasing number of experiments that involve the generation of a large amount of images at different imaging modalities/scales. It stresses the need for computer vision methods that automate image classification tasks. Results: We illustrate the potential of our image classification method in cell biology by evaluating it on four datasets of images related to protein distributions or subcellular localizations, and red-blood cell shapes. Accuracy results are quite good without any specific pre-processing neither domain knowledge incorporation. The method is implemented in Java and available upon request for evaluation and research purpose. Conclusion: Our method is directly applicable to any image classification problems. We foresee the use of this automatic approach as a baseline method and first try on various biological image classification problems

    LOCATE: a mouse protein subcellular localization database

    Get PDF
    We present here LOCATE, a curated, web-accessible database that houses data describing the membrane organization and subcellular localization of proteins from the FANTOM3 Isoform Protein Sequence set. Membrane organization is predicted by the high-throughput, computational pipeline MemO. The subcellular locations of selected proteins from this set were determined by a high-throughput, immunofluorescence-based assay and by manually reviewing >1700 peer-reviewed publications. LOCATE represents the first effort to catalogue the experimentally verified subcellular location and membrane organization of mammalian proteins using a high-throughput approach and provides localization data for ∼40% of the mouse proteome. It is available at

    ProtSweep, 2Dsweep and DomainSweep: protein analysis suite at DKFZ

    Get PDF
    The wealth of transcript information that has been made publicly available in recent years has led to large pools of individual web sites offering access to bioinformatics software. However, finding out which services exist, what they can or cannot do, how to use them and how to feed results from one service to the next one in the right format can be very time and resource consuming, especially for non-experts

    LOCATE: a mammalian protein subcellular localization database

    Get PDF
    LOCATE is a curated, web-accessible database that houses data describing the membrane organization and subcellular localization of mouse and human proteins. Over the past 2 years, the data in LOCATE have grown substantially. The database now contains high-quality localization data for 20% of the mouse proteome and general localization annotation for nearly 36% of the mouse proteome. The proteome annotated in LOCATE is from the RIKEN FANTOM Consortium Isoform Protein Sequence sets which contains 58 128 mouse and 64 637 human protein isoforms. Other additions include computational subcellular localization predictions, automated computational classification of experimental localization image data, prediction of protein sorting signals and third party submission of literature data. Collectively, this database provides localization proteome for individual subcellular compartments that will underpin future systematic investigations of these regions. It is available at http://locate.imb.uq.edu.au

    Automated production of recombinant human proteins as resource for proteome research

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An arbitrary set of 96 human proteins was selected and tested to set-up a fully automated protein production strategy, covering all steps from DNA preparation to protein purification and analysis. The target proteins are encoded by functionally uncharacterized open reading frames (ORF) identified by the German cDNA consortium. Fusion proteins were produced in <it>E. coli </it>with four different fusion tags and tested in five different purification strategies depending on the respective fusion tag. The automated strategy relies on standard liquid handling and clone picking equipment.</p> <p>Results</p> <p>A robust automated strategy for the production of recombinant human proteins in <it>E. coli </it>was established based on a set of four different protein expression vectors resulting in NusA/His, MBP/His, GST and His-tagged proteins. The yield of soluble fusion protein was correlated with the induction temperature and the respective fusion tag. NusA/His and MBP/His fusion proteins are best expressed at low temperature (25°C), whereas the yield of soluble GST fusion proteins was higher when protein expression was induced at elevated temperature. In contrast, the induction of soluble His-tagged fusion proteins was independent of the temperature. Amylose was not found useful for affinity-purification of MBP/His fusion proteins in a high-throughput setting, and metal chelating chromatography is recommended instead.</p> <p>Conclusion</p> <p>Soluble fusion proteins can be produced in <it>E. coli </it>in sufficient qualities and μg/ml culture quantities for downstream applications like microarray-based assays, and studies on protein-protein interactions employing a fully automated protein expression and purification strategy. Future applications might include the optimization of experimental conditions for the large-scale production of soluble recombinant proteins from libraries of open reading frames.</p

    The GOA database in 2009—an integrated Gene Ontology Annotation resource

    Get PDF
    The Gene Ontology Annotation (GOA) project at the EBI (http://www.ebi.ac.uk/goa) provides high-quality electronic and manual associations (annotations) of Gene Ontology (GO) terms to UniProt Knowledgebase (UniProtKB) entries. Annotations created by the project are collated with annotations from external databases to provide an extensive, publicly available GO annotation resource. Currently covering over 160 000 taxa, with greater than 32 million annotations, GOA remains the largest and most comprehensive open-source contributor to the GO Consortium (GOC) project. Over the last five years, the group has augmented the number and coverage of their electronic pipelines and a number of new manual annotation projects and collaborations now further enhance this resource. A range of files facilitate the download of annotations for particular species, and GO term information and associated annotations can also be viewed and downloaded from the newly developed GOA QuickGO tool (http://www.ebi.ac.uk/QuickGO), which allows users to precisely tailor their annotation set
    corecore