798 research outputs found

    Data Fine-tuning

    Full text link
    In real-world applications, commercial off-the-shelf systems are utilized for performing automated facial analysis including face recognition, emotion recognition, and attribute prediction. However, a majority of these commercial systems act as black boxes due to the inaccessibility of the model parameters which makes it challenging to fine-tune the models for specific applications. Stimulated by the advances in adversarial perturbations, this research proposes the concept of Data Fine-tuning to improve the classification accuracy of a given model without changing the parameters of the model. This is accomplished by modeling it as data (image) perturbation problem. A small amount of "noise" is added to the input with the objective of minimizing the classification loss without affecting the (visual) appearance. Experiments performed on three publicly available datasets LFW, CelebA, and MUCT, demonstrate the effectiveness of the proposed concept.Comment: Accepted in AAAI 201

    Semi-Adversarial Networks: Convolutional Autoencoders for Imparting Privacy to Face Images

    Full text link
    In this paper, we design and evaluate a convolutional autoencoder that perturbs an input face image to impart privacy to a subject. Specifically, the proposed autoencoder transforms an input face image such that the transformed image can be successfully used for face recognition but not for gender classification. In order to train this autoencoder, we propose a novel training scheme, referred to as semi-adversarial training in this work. The training is facilitated by attaching a semi-adversarial module consisting of a pseudo gender classifier and a pseudo face matcher to the autoencoder. The objective function utilized for training this network has three terms: one to ensure that the perturbed image is a realistic face image; another to ensure that the gender attributes of the face are confounded; and a third to ensure that biometric recognition performance due to the perturbed image is not impacted. Extensive experiments confirm the efficacy of the proposed architecture in extending gender privacy to face images

    The Devil of Face Recognition is in the Noise

    Full text link
    The growing scale of face recognition datasets empowers us to train strong convolutional networks for face recognition. While a variety of architectures and loss functions have been devised, we still have a limited understanding of the source and consequence of label noise inherent in existing datasets. We make the following contributions: 1) We contribute cleaned subsets of popular face databases, i.e., MegaFace and MS-Celeb-1M datasets, and build a new large-scale noise-controlled IMDb-Face dataset. 2) With the original datasets and cleaned subsets, we profile and analyze label noise properties of MegaFace and MS-Celeb-1M. We show that a few orders more samples are needed to achieve the same accuracy yielded by a clean subset. 3) We study the association between different types of noise, i.e., label flips and outliers, with the accuracy of face recognition models. 4) We investigate ways to improve data cleanliness, including a comprehensive user study on the influence of data labeling strategies to annotation accuracy. The IMDb-Face dataset has been released on https://github.com/fwang91/IMDb-Face.Comment: accepted to ECCV'1

    GP-GAN: Gender Preserving GAN for Synthesizing Faces from Landmarks

    Full text link
    Facial landmarks constitute the most compressed representation of faces and are known to preserve information such as pose, gender and facial structure present in the faces. Several works exist that attempt to perform high-level face-related analysis tasks based on landmarks. In contrast, in this work, an attempt is made to tackle the inverse problem of synthesizing faces from their respective landmarks. The primary aim of this work is to demonstrate that information preserved by landmarks (gender in particular) can be further accentuated by leveraging generative models to synthesize corresponding faces. Though the problem is particularly challenging due to its ill-posed nature, we believe that successful synthesis will enable several applications such as boosting performance of high-level face related tasks using landmark points and performing dataset augmentation. To this end, a novel face-synthesis method known as Gender Preserving Generative Adversarial Network (GP-GAN) that is guided by adversarial loss, perceptual loss and a gender preserving loss is presented. Further, we propose a novel generator sub-network UDeNet for GP-GAN that leverages advantages of U-Net and DenseNet architectures. Extensive experiments and comparison with recent methods are performed to verify the effectiveness of the proposed method.Comment: 6 pages, 5 figures, this paper is accepted as 2018 24th International Conference on Pattern Recognition (ICPR2018

    Machine Learning Models that Remember Too Much

    Full text link
    Machine learning (ML) is becoming a commodity. Numerous ML frameworks and services are available to data holders who are not ML experts but want to train predictive models on their data. It is important that ML models trained on sensitive inputs (e.g., personal images or documents) not leak too much information about the training data. We consider a malicious ML provider who supplies model-training code to the data holder, does not observe the training, but then obtains white- or black-box access to the resulting model. In this setting, we design and implement practical algorithms, some of them very similar to standard ML techniques such as regularization and data augmentation, that "memorize" information about the training dataset in the model yet the model is as accurate and predictive as a conventionally trained model. We then explain how the adversary can extract memorized information from the model. We evaluate our techniques on standard ML tasks for image classification (CIFAR10), face recognition (LFW and FaceScrub), and text analysis (20 Newsgroups and IMDB). In all cases, we show how our algorithms create models that have high predictive power yet allow accurate extraction of subsets of their training data

    Level Playing Field for Million Scale Face Recognition

    Full text link
    Face recognition has the perception of a solved problem, however when tested at the million-scale exhibits dramatic variation in accuracies across the different algorithms. Are the algorithms very different? Is access to good/big training data their secret weapon? Where should face recognition improve? To address those questions, we created a benchmark, MF2, that requires all algorithms to be trained on same data, and tested at the million scale. MF2 is a public large-scale set with 672K identities and 4.7M photos created with the goal to level playing field for large scale face recognition. We contrast our results with findings from the other two large-scale benchmarks MegaFace Challenge and MS-Celebs-1M where groups were allowed to train on any private/public/big/small set. Some key discoveries: 1) algorithms, trained on MF2, were able to achieve state of the art and comparable results to algorithms trained on massive private sets, 2) some outperformed themselves once trained on MF2, 3) invariance to aging suffers from low accuracies as in MegaFace, identifying the need for larger age variations possibly within identities or adjustment of algorithms in future testings
    • …
    corecore