11 research outputs found

    New Decomposition Technique for Decomposeing a Multilevel Secure Relation Into Single-Level Relations

    Get PDF

    Cover Story Management

    No full text
    International audienceIn a multilevel database, cover stories are usually managed using the ambiguous technique of polyinstantiation. In this paper, we define a new technique to manage cover stories and propose a formal representation of a multilevel database containing cover stories. Our model aims to be a generic model, that is, it can be interpreted for any kind of database (e.g. relational, object- oriented etc). We then consider the problem of updating a multilevel database containing cover stories managed with our technique

    Logical Foundations of Multilevel Databases

    No full text
    International audienceIn this paper, we propose a formal model for multilevel databases. This model aims at being a generic model, that is it can be interpreted for any kind of database (relational, object-oriented...). Our model has three layers. The first layer corresponds to a model for a non-protected database. The second layer corresponds to a model for a multilevel database. In this second layer, we propose a list of theorems that must be respected in order to build a secure multilevel database. We also propose a new solution to manage cover stories without using the ambiguous technique of polyinstantiation. The third layer corresponds to a model for a MultiView database, that is, a database that provides at each security level a consistent view of the multilevel database. Finally, as an illustration, we interpret our 3-layer model in the case of an object-oriented database

    Performance study of a COTS Distributed DBMS adapted for multilevel security

    Get PDF
    Multilevel secure database management system (MLS/DBMS) products no longer enjoy direct commercial-off-the-shelf (COTS) support. Meanwhile, existing users of these MLS/DBMS products continue to rely on them to satisfy their multilevel security requirements. This calls for a new approach to developing MLS/DBMS systems, one that relies on adapting the features of existing COTS database products rather than depending on the traditional custom design products to provide continuing MLS support. We advocate fragmentation as a good basis for implementing multilevel security in the new approach because it is well supported in some current COTS database management systems. We implemented a prototype that utilises the inherent advantages of the distribution scheme in distributed databases for controlling access to single-level fragments; this is achieved by augmenting the distribution module of the host distributed DBMS with MLS code such that the clearance of the user making a request is always compared to the classification of the node containing the fragments referenced; requests to unauthorised nodes are simply dropped. The prototype we implemented was used to instrument a series of experiments to determine the relative performance of the tuple, attribute, and element level fragmentation schemes. Our experiments measured the impact on the front-end and the network when various properties of each scheme, such as the number of tuples, attributes, security levels, and the page size, were varied for a Selection and Join query. We were particularly interested in the relationship between performance degradation and changes in the quantity of these properties. The performance of each scheme was measured in terms of its response time. The response times for the element level fragmentation scheme increased as the numbers of tuples, attributes, security levels, and the page size were increased, more significantly so than when the number of tuples and attributes were increased. The response times for the attribute level fragmentation scheme was the fastest, suggesting that the performance of the attribute level scheme is superior to the tuple and element level fragmentation schemes. In the context of assurance, this research has also shown that the distribution of fragments based on security level is a more natural approach to implementing security in MLS/DBMS systems, because a multilevel database is analogous to a distributed database based on security level. Overall, our study finds that the attribute level fragmentation scheme demonstrates better performance than the tuple and element level schemes. The response times (and hence the performance) of the element level fragmentation scheme exhibited the worst performance degradation compared to the tuple and attribute level schemes

    Decentralized information flow control for databases

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 177-194).Privacy and integrity concerns have been mounting in recent years as sensitive data such as medical records, social network records, and corporate and government secrets are increasingly being stored in online systems. The rate of high-profile breaches has illustrated that current techniques are inadequate for protecting sensitive information. Many of these breaches involve databases that handle information for a multitude of individuals, but databases don't provide practical tools to protect those individuals from each other, so that task is relegated to the application. This dissertation describes a system that improves security in a principled way by extending the database system and the application platform to support information flow control. Information flow control has been gaining traction as a practical way to protect information in the contexts of programming languages and operating systems. Recent research advocates the decentralized model for information flow control (DIFC), since it provides the necessary expressiveness to protect data for many individuals with varied security concerns.However, despite the fact that most applications implicated in breaches rely on relational databases, there have been no prior comprehensive attempts to extend DIFC to a database system. This dissertation introduces IFDB, which is a database management system that supports DIFC with minimal overhead. IFDB pioneers the Query by Label model, which provides applications with a simple way to delineate constraints on the confidentiality and integrity of the data they obtain from the database. This dissertation also defines new abstractions for managing information flows in a database and proposes new ways to address covert channels. Finally, the IFDB implementation and case studies with real applications demonstrate that database support for DIFC improves security, is easy for developers to use, and has good performance.by David Andrew Schultz.Ph.D

    Steganographic database management system

    Get PDF
    Master'sMASTER OF SCIENC
    corecore