227 research outputs found

    Beyond Gauss: Image-Set Matching on the Riemannian Manifold of PDFs

    Get PDF
    State-of-the-art image-set matching techniques typically implicitly model each image-set with a Gaussian distribution. Here, we propose to go beyond these representations and model image-sets as probability distribution functions (PDFs) using kernel density estimators. To compare and match image-sets, we exploit Csiszar f-divergences, which bear strong connections to the geodesic distance defined on the space of PDFs, i.e., the statistical manifold. Furthermore, we introduce valid positive definite kernels on the statistical manifolds, which let us make use of more powerful classification schemes to match image-sets. Finally, we introduce a supervised dimensionality reduction technique that learns a latent space where f-divergences reflect the class labels of the data. Our experiments on diverse problems, such as video-based face recognition and dynamic texture classification, evidence the benefits of our approach over the state-of-the-art image-set matching methods

    Graph-Based Detection of Seams In 360-Degree Images

    Get PDF
    In this paper, we propose an algorithm to detect a specific kind of distortions, referred to as seams, which commonly oc- cur when a 360-degree image is represented in planar domain by projecting the sphere to a polyhedron, e.g, via the Cube Map (CM) projection, and undergoes lossy compression. The proposed algorithm exploits a graph-based representation to account for the actual sampling density of the 360-degree sig- nal in the native spherical domain. The CM image is con- sidered as a signal lying on a graph defined on the spherical surface. The spectra of the processed and the original sig- nals, computed by applying the Graph Fourier Transform, are compared to detect the seams. To test our method a dataset of compressed CM 360-degree images, annotated by experts, has been created. The performance of the proposed algorithm is compared to those achieved by baseline metrics, as well as to the same approach based on spectral comparison but ignor- ing the spherical nature of the signal. The experimental results show that the proposed method has the best performance and can successfully detect up to approximately 90% of visible seams on our dataset

    A survey of face recognition techniques under occlusion

    Get PDF
    The limited capacity to recognize faces under occlusions is a long-standing problem that presents a unique challenge for face recognition systems and even for humans. The problem regarding occlusion is less covered by research when compared to other challenges such as pose variation, different expressions, etc. Nevertheless, occluded face recognition is imperative to exploit the full potential of face recognition for real-world applications. In this paper, we restrict the scope to occluded face recognition. First, we explore what the occlusion problem is and what inherent difficulties can arise. As a part of this review, we introduce face detection under occlusion, a preliminary step in face recognition. Second, we present how existing face recognition methods cope with the occlusion problem and classify them into three categories, which are 1) occlusion robust feature extraction approaches, 2) occlusion aware face recognition approaches, and 3) occlusion recovery based face recognition approaches. Furthermore, we analyze the motivations, innovations, pros and cons, and the performance of representative approaches for comparison. Finally, future challenges and method trends of occluded face recognition are thoroughly discussed

    Overcomplete Image Representations for Texture Analysis

    Get PDF
    Advisor/s: Dr. Boris Escalante-Ramírez and Dr. Gabriel Cristóbal. Date and location of PhD thesis defense: 23th October 2013, Universidad Nacional Autónoma de México.In recent years, computer vision has played an important role in many scientific and technological areas mainlybecause modern society highlights vision over other senses. At the same time, application requirements and complexity have also increased so that in many cases the optimal solution depends on the intrinsic charac-teristics of the problem; therefore, it is difficult to propose a universal image model. In parallel, advances in understanding the human visual system have allowed to propose sophisticated models that incorporate simple phenomena which occur in early stages of the visual system. This dissertation aims to investigate characteristicsof vision such as over-representation and orientation of receptive fields in order to propose bio-inspired image models for texture analysis
    • …
    corecore