13,058 research outputs found

    Measuring sets in infinite groups

    Full text link
    We are now witnessing a rapid growth of a new part of group theory which has become known as "statistical group theory". A typical result in this area would say something like ``a random element (or a tuple of elements) of a group G has a property P with probability p". The validity of a statement like that does, of course, heavily depend on how one defines probability on groups, or, equivalently, how one measures sets in a group (in particular, in a free group). We hope that new approaches to defining probabilities on groups outlined in this paper create, among other things, an appropriate framework for the study of the "average case" complexity of algorithms on groups.Comment: 22 page

    Kolmogorov Complexity in perspective. Part I: Information Theory and Randomnes

    Get PDF
    We survey diverse approaches to the notion of information: from Shannon entropy to Kolmogorov complexity. Two of the main applications of Kolmogorov complexity are presented: randomness and classification. The survey is divided in two parts in the same volume. Part I is dedicated to information theory and the mathematical formalization of randomness based on Kolmogorov complexity. This last application goes back to the 60's and 70's with the work of Martin-L\"of, Schnorr, Chaitin, Levin, and has gained new impetus in the last years.Comment: 40 page

    Complexity vs Energy: Theory of Computation and Theoretical Physics

    Full text link
    This paper is a survey dedicated to the analogy between the notions of {\it complexity} in theoretical computer science and {\it energy} in physics. This analogy is not metaphorical: I describe three precise mathematical contexts, suggested recently, in which mathematics related to (un)computability is inspired by and to a degree reproduces formalisms of statistical physics and quantum field theory.Comment: 23 pages. Talk at the satellite conference to ECM 2012, "QQQ Algebra, Geometry, Information", Tallinn, July 9-12, 201

    Complexity vs energy: theory of computation and theoretical physics

    No full text

    Renormalization and Computation II: Time Cut-off and the Halting Problem

    Full text link
    This is the second installment to the project initiated in [Ma3]. In the first Part, I argued that both philosophy and technique of the perturbative renormalization in quantum field theory could be meaningfully transplanted to the theory of computation, and sketched several contexts supporting this view. In this second part, I address some of the issues raised in [Ma3] and provide their development in three contexts: a categorification of the algorithmic computations; time cut--off and Anytime Algorithms; and finally, a Hopf algebra renormalization of the Halting Problem.Comment: 28 page

    Renormalisation and computation II: time cut-off and the Halting Problem

    No full text
    • …
    corecore