1,316,158 research outputs found

    Luminosity Spectrum Reconstruction at Linear Colliders

    Get PDF
    A good knowledge of the luminosity spectrum is mandatory for many measurements at future e+e- colliders. As the beam-parameters determining the luminosity spectrum cannot be measured precisely, the luminosity spectrum has to be measured through a gauge process with the detector. The measured distributions, used to reconstruct the spectrum, depend on Initial State Radiation, cross-section, and Final State Radiation. To extract the basic luminosity spectrum, a parametric model of the luminosity spectrum is created, in this case the spectrum at the 3 TeV Compact Linear Collider (CLIC). The model is used within a reweighting technique to extract the luminosity spectrum from measured Bhabha event observables, taking all relevant effects into account. The centre-of-mass energy spectrum is reconstructed within 5% over the full validity range of the model. The reconstructed spectrum does not result in a significant bias or systematic uncertainty in the exemplary physics benchmark process of smuon pair production.Comment: Version accepted by EPJC. Minor change

    The use of the experimentally deduced Brunt-Vaisala frequency and turbulent velocity fluctuations to estimate the eddy diffusion coefficient

    Get PDF
    The determination of the turbulent energy dissipation rate or the eddy diffusion coefficient from radar observations can be done through the turbulence refractive index structure constant, deduced from calibrated echo power measurements, or through the turbulent velocity fluctuations, deduced from the echo spectrum width. Besides the radar parameters, power and spectrum width, the first approach needs knowledge of profiles of temperature and electron density in the mesosphere and the fraction of the radar volume filled with turbulence. The latter approach needs knowledge of the temperature profile, namely, the Brunt-Vaisala frequency. The use of this latter approach is demonstrated

    Quasiclassical Random Matrix Theory

    Full text link
    We directly combine ideas of the quasiclassical approximation with random matrix theory and apply them to the study of the spectrum, in particular to the two-level correlator. Bogomolny's transfer operator T, quasiclassically an NxN unitary matrix, is considered to be a random matrix. Rather than rejecting all knowledge of the system, except for its symmetry, [as with Dyson's circular unitary ensemble], we choose an ensemble which incorporates the knowledge of the shortest periodic orbits, the prime quasiclassical information bearing on the spectrum. The results largely agree with expectations but contain novel features differing from other recent theories.Comment: 4 pages, RevTex, submitted to Phys. Rev. Lett., permanent e-mail [email protected]

    The photon energy spectrum in B-> X_s + \gamma in perturbative QCD through O(\alpha_s^2)

    Full text link
    We derive the dominant part of the O(\alpha_s^2) correction to the photon energy spectrum in the inclusive decay B-> X_s+gamma. The detailed knowledge of the spectrum is important for relating the theoretical calculations of the B-> X_s + \gamma decay rate and the experimental measurements where a cut on the photon energy is applied. In addition, moments of the photon energy spectrum are used for the determination of the b-quark mass and other fundamental parameters of heavy quark physics. Our calculation reduces the theoretical uncertainty associated with uncalculated higher orders effects and shows that, for B-> X_s+\gamma, QCD radiative corrections to the photon energy spectrum are under theoretical control.Comment: 8 pages, 6 figures; references adde

    Reconstructing the Inflaton Potential---in Principle and in Practice

    Full text link
    Generalizing the original work by Hodges and Blumenthal, we outline a formalism which allows one, in principle, to reconstruct the potential of the inflaton field from knowledge of the tensor gravitational wave spectrum or the scalar density fluctuation spectrum, with special emphasis on the importance of the tensor spectrum. We provide some illustrative examples of such reconstruction. We then discuss in some detail the question of whether one can use real observations to carry out this procedure. We conclude that in practice, a full reconstruction of the functional form of the potential will not be possible within the foreseeable future. However, with a knowledge of the dark matter components, it should soon be possible to combine intermediate-scale data with measurements of large-scale cosmic microwave background anisotropies to yield useful information regarding the potential.Comment: 39 pages plus 2 figures (upon request:[email protected]), LaTeX, FNAL--PUB--93/029-A; SUSSEX-AST 93/3-
    • …
    corecore