1,749 research outputs found

    Making Neural Networks Interpretable with Attribution: Application to Implicit Signals Prediction

    Full text link
    Explaining recommendations enables users to understand whether recommended items are relevant to their needs and has been shown to increase their trust in the system. More generally, if designing explainable machine learning models is key to check the sanity and robustness of a decision process and improve their efficiency, it however remains a challenge for complex architectures, especially deep neural networks that are often deemed "black-box". In this paper, we propose a novel formulation of interpretable deep neural networks for the attribution task. Differently to popular post-hoc methods, our approach is interpretable by design. Using masked weights, hidden features can be deeply attributed, split into several input-restricted sub-networks and trained as a boosted mixture of experts. Experimental results on synthetic data and real-world recommendation tasks demonstrate that our method enables to build models achieving close predictive performances to their non-interpretable counterparts, while providing informative attribution interpretations.Comment: 14th ACM Conference on Recommender Systems (RecSys '20

    Neural Attentive Session-based Recommendation

    Full text link
    Given e-commerce scenarios that user profiles are invisible, session-based recommendation is proposed to generate recommendation results from short sessions. Previous work only considers the user's sequential behavior in the current session, whereas the user's main purpose in the current session is not emphasized. In this paper, we propose a novel neural networks framework, i.e., Neural Attentive Recommendation Machine (NARM), to tackle this problem. Specifically, we explore a hybrid encoder with an attention mechanism to model the user's sequential behavior and capture the user's main purpose in the current session, which are combined as a unified session representation later. We then compute the recommendation scores for each candidate item with a bi-linear matching scheme based on this unified session representation. We train NARM by jointly learning the item and session representations as well as their matchings. We carried out extensive experiments on two benchmark datasets. Our experimental results show that NARM outperforms state-of-the-art baselines on both datasets. Furthermore, we also find that NARM achieves a significant improvement on long sessions, which demonstrates its advantages in modeling the user's sequential behavior and main purpose simultaneously.Comment: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. arXiv admin note: text overlap with arXiv:1511.06939, arXiv:1606.08117 by other author
    • …
    corecore