1,015 research outputs found

    The double universal joint wrist on a manipulator: Solution of inverse position kinematics and singularity analysis

    Get PDF
    This paper presents three methods to solve the inverse position kinematics position problem of the double universal joint attached to a manipulator: (1) an analytical solution for two specific cases; (2) an approximate closed form solution based on ignoring the wrist offset; and (3) an iterative method which repeats closed form position and orientation calculations until the solution is achieved. Several manipulators are used to demonstrate the solution methods: cartesian, cylindrical, spherical, and an anthropomorphic articulated arm, based on the Flight Telerobotic Servicer (FTS) arm. A singularity analysis is presented for the double universal joint wrist attached to the above manipulator arms. While the double universal joint wrist standing alone is singularity-free in orientation, the singularity analysis indicates the presence of coupled position/orientation singularities of the spherical and articulated manipulators with the wrist. The cartesian and cylindrical manipulators with the double universal joint wrist were found to be singularity-free. The methods of this paper can be implemented in a real-time controller for manipulators with the double universal joint wrist. Such mechanically dextrous systems could be used in telerobotic and industrial applications, but further work is required to avoid the singularities

    Geometric path planning without maneuvers for nonholonomic parallel orienting robots

    Get PDF
    Current geometric path planners for nonholonomic parallel orienting robots generate maneuvers consisting of a sequence of moves connected by zero-velocity points. The need for these maneuvers restrains the use of this kind of parallel robots to few applications. Based on a rather old result on linear time-varying systems, this letter shows that there are infinitely differentiable paths connecting two arbitrary points in SO(3) such that the instantaneous axis of rotation along the path rest on a fixed plane. This theoretical result leads to a practical path planner for nonholonomic parallel orienting robots that generates single-move maneuvers. To present this result, we start with a path planner based on three-move maneuvers, and then we proceed by progressively reducing the number of moves to one, thus providing a unified treatment with respect to previous geometric path planners.Peer ReviewedPostprint (author's final draft

    Design of an under-actuated wrist based on adaptive synergies

    Get PDF
    An effective robotic wrist represents a key enabling element in robotic manipulation, especially in prosthetics. In this paper, we propose an under-actuated wrist system, which is also adaptable and allows to implement different under-actuation schemes. Our approach leverages upon the idea of soft synergies - in particular the design method of adaptive synergies - as it derives from the field of robot hand design. First we introduce the design principle and its implementation and function in a configurable test bench prototype, which can be used to demonstrate the feasibility of our idea. Furthermore, we report on results from preliminary experiments with humans, aiming to identify the most probable wrist pose during the pre-grasp phase in activities of daily living. Based on these outcomes, we calibrate our wrist prototype accordingly and demonstrate its effectiveness to accomplish grasping and manipulation tasks

    Three-dimensional ultrasound image-guided robotic system for accurate microwave coagulation of malignant liver tumours

    Full text link
    Background The further application of conventional ultrasound (US) image-guided microwave (MW) ablation of liver cancer is often limited by two-dimensional (2D) imaging, inaccurate needle placement and the resulting skill requirement. The three-dimensional (3D) image-guided robotic-assisted system provides an appealing alternative option, enabling the physician to perform consistent, accurate therapy with improved treatment effectiveness. Methods Our robotic system is constructed by integrating an imaging module, a needle-driven robot, a MW thermal field simulation module, and surgical navigation software in a practical and user-friendly manner. The robot executes precise needle placement based on the 3D model reconstructed from freehand-tracked 2D B-scans. A qualitative slice guidance method for fine registration is introduced to reduce the placement error caused by target motion. By incorporating the 3D MW specific absorption rate (SAR) model into the heat transfer equation, the MW thermal field simulation module determines the MW power level and the coagulation time for improved ablation therapy. Two types of wrists are developed for the robot: a ‘remote centre of motion’ (RCM) wrist and a non-RCM wrist, which is preferred in real applications. Results The needle placement accuracies were < 3 mm for both wrists in the mechanical phantom experiment. The target accuracy for the robot with the RCM wrist was improved to 1.6 ± 1.0 mm when real-time 2D US feedback was used in the artificial-tissue phantom experiment. By using the slice guidance method, the robot with the non-RCM wrist achieved accuracy of 1.8 ± 0.9 mm in the ex vivo experiment; even target motion was introduced. In the thermal field experiment, a 5.6% relative mean error was observed between the experimental coagulated neurosis volume and the simulation result. Conclusion The proposed robotic system holds promise to enhance the clinical performance of percutaneous MW ablation of malignant liver tumours. Copyright © 2010 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78054/1/313_ftp.pd

    Modeling human-likeness in approaching motions of dual-arm autonomous robots

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThis paper addresses the problem of obtaining human-like motions with an anthropomorphic dual-arm torso assembled on a mobile platform. The focus is set on the coordinated movements of the robotic arms and the robot base while approaching a table to subsequently perform a bimanual manipulation task. For this, human movements are captured and mapped to the robot in order to compute the human dual-arm synergies. Since the demonstrated synergies change depending on the robot position, a recursive Cartesian-space discretization is presented based on these differences. Thereby, different movements of the arms are assigned to different regions of the Cartesian space. As an application example, a motion-planning algorithm exploiting this information is proposed and used.Postprint (published version

    On Crossley's contribution to the development of graph based algorithms for the analysis of mechanisms and gear trains

    Get PDF
    This paper celebrates a particular branch of Crossley's early work dedicated to Mechanism Science, which deals with a rigorous introduction of Graph Theory to the study of some fundamental and intrinsic properties of kinematic chains and mechanisms. Although such idea gave its main outcome in Type and Number Synthesis (which has been much better and extensively described in another paper of the present special issue) some other intriguing side effects appeared, later in Mechanism Science, which yielded several results, and are still in the center of research and industrial world interest, such as, to name but a few, the automatic generation of the equations governing kinematic, static force and dynamic analysis of mechanisms and geared trains, the power flow analysis, the computation of the efficiency and, finally, the never fully explored structure-to-function mapping, which the present contribution points out to be still a challenge in the field
    corecore