245 research outputs found

    Estimation for Linear and Semi-linear Infinite-dimensional Systems

    Get PDF
    Estimating the state of a system that is not fully known or that is exposed to noise has been an intensely studied problem in recent mathematical history. Such systems are often modelled by either ordinary differential equations, which evolve in finite-dimensional state-spaces, or partial differential equations, the state-space of which is infinite-dimensional. The Kalman filter is a minimal mean squared error estimator for linear finite-dimensional and linear infinite-dimensional systems disturbed by Wiener processes, which are stochastic processes representing the noise. For nonlinear finite-dimensional systems the extended Kalman filter is a widely used extension thereof which relies on linearization of the system. In all cases the Kalman filter consists of a differential or integral equation coupled with a Riccati equation, which is an equation that determines the optimal estimator gain. This thesis proposes an estimator for semi-linear infinite-dimensional systems. It is shown that under some conditions such a system can also be coupled with a Riccati equation. To motivate this result, the Kalman filter for finite-dimensional and infinite-dimensional systems is reviewed, as well as the corresponding theory for both stochastic processes and infinite-dimensional systems. Important results concerning the infinite-dimensional Riccati equation are outlined and existence of solutions for a class of semi-linear infinite-dimensional systems is established. Finally the well-posedness of the coupling between a semi-linear infinite-dimensional system with a Riccati equation is proven using a fixed point argument

    Linear theory for filtering nonlinear multiscale systems with model error

    Full text link
    We study filtering of multiscale dynamical systems with model error arising from unresolved smaller scale processes. The analysis assumes continuous-time noisy observations of all components of the slow variables alone. For a linear model with Gaussian noise, we prove existence of a unique choice of parameters in a linear reduced model for the slow variables. The linear theory extends to to a non-Gaussian, nonlinear test problem, where we assume we know the optimal stochastic parameterization and the correct observation model. We show that when the parameterization is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa. Given the correct parameterization, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that parameters estimated online, as part of a filtering procedure, produce accurate filtering and equilibrium statistical prediction. In contrast, a linear regression based offline method, which fits the parameters to a given training data set independently from the filter, yields filter estimates which are worse than the observations or even divergent when the slow variables are not fully observed

    On the Stratonovich – Kalman - Bucy filtering algorithm application for accurate characterization of financial time series with use of state-space model by central banks

    Get PDF
    The central banks introduce and implement the monetary and financial stabilities policies, going from the accurate estimations of national macro-financial indicators such as the Gross Domestic Product (GDP). Analyzing the dependence of the GDP on the time, the central banks accurately estimate the missing observations in the financial time series with the application of different interpolation models, based on the various filtering algorithms. The Stratonovich – Kalman – Bucy filtering algorithm in the state space interpolation model is used with the purpose to interpolate the real GDP by the US Federal Reserve and other central banks. We overviewed the Stratonovich – Kalman – Bucy filtering algorithm theory and its numerous applications. We describe the technique of the accurate characterization of the economic and financial time series with application of state space methods with the Stratonovich – Kalman - Bucy filtering algorithm, focusing on the estimation of Gross Domestic Product by the Swiss National Bank. Applying the integrative thinking principles, we developed the software program and performed the computer modeling, using the Stratonovich – Kalman – Bucy filtering algorithm for the accurate characterization of the Australian GDP, German GDP and the USA GDP in the frames of the state-space model in Matlab. We also used the Hodrick-Prescott filter to estimate the corresponding output gaps in Australia, Germany and the USA. We found that the Australia, Germany on one side and the USA on other side have the different business cycles. We believe that the central banks can use our special software program with the aim to greatly improve the national macroeconomic indicators forecast by making the accurate characterization of the financial time-series with the application of the state-space models, based on the Stratonovich – Kalman – Bucy filtering algorithm

    Lie algebraic method in filtering and identification

    Get PDF
    • …
    corecore