1,029 research outputs found

    TarO : a target optimisation system for structural biology

    Get PDF
    This work was funded by the UK Biotechnology and Biological Sciences Research Council (BBSRC) Structural Proteomics of Rational Targets (SPoRT) initiative, (Grant BBS/B/14434). Funding to pay the Open Access publication charges for this article was provided by BBSRC.TarO (http://www.compbio.dundee.ac.uk/taro) offers a single point of reference for key bioinformatics analyses relevant to selecting proteins or domains for study by structural biology techniques. The protein sequence is analysed by 17 algorithms and compared to 8 databases. TarO gathers putative homologues, including orthologues, and then obtains predictions of properties for these sequences including crystallisation propensity, protein disorder and post-translational modifications. Analyses are run on a high-performance computing cluster, the results integrated, stored in a database and accessed through a web-based user interface. Output is in tabulated format and in the form of an annotated multiple sequence alignment (MSA) that may be edited interactively in the program Jalview. TarO also simplifies the gathering of additional annotations via the Distributed Annotation System, both from the MSA in Jalview and through links to Dasty2. Routes to other information gateways are included, for example to relevant pages from UniProt, COG and the Conserved Domains Database. Open access to TarO is available from a guest account with private accounts for academic use available on request. Future development of TarO will include further analysis steps and integration with the Protein Information Management System (PIMS), a sister project in the BBSRC Structural Proteomics of Rational Targets initiative.Publisher PDFPeer reviewe

    AB INITIO PROTEIN STRUCTURE PREDICTION ALGORITHMS

    Get PDF
    Genes that encode novel proteins are constantly being discovered and added to databases, but the speed with which their structures are being determined is not keeping up with this rate of discovery. Currently, homology and threading methods perform the best for protein structure prediction, but they are not appropriate to use for all proteins. Still, the best way to determine a protein\u27s structure is through biological experimentation. This research looks into possible methods and relations that pertain to ab initio protein structure prediction. The study includes the use of positional and transitional probabilities of amino acids obtained from a non-redundant set of proteins created by Jpred for training computational methods. The methods this study focuses on are Hidden Markov Models and incorporating neighboring amino acids in the primary structure of proteins with the above-mentioned probabilities. The methods are presented to predict the secondary structure of amino acids without relying on the existence of a homolog. The main goal of this research is to be able to obtain information from an amino acid sequence that could be used for all future predictions of protein structures. Further, analysis of the performance of the methods is presented for explanation of how they could be incorporated in current and future work

    Structural analysis of the adenovirus type 2 E3/19K protein using mutagenesis and a panel of conformation-sensitive monoclonal antibodies

    Get PDF
    The E3/19K protein of human adenovirus type 2 (Ad2) was the first viral protein shown to interfere with antigen presentation. This 25 kDa transmembrane glycoprotein binds to major histocompatibility complex (MHC) class I molecules in the endoplasmic reticulum (ER), thereby preventing transport of newly synthesized peptide–MHC complexes to the cell surface and consequently T cell recognition. Recent data suggest that E3/19K also sequesters MHC class I like ligands intracellularly to suppress natural killer (NK) cell recognition. While the mechanism of ER retention is well understood, the structure of E3/19K remains elusive. To further dissect the structural and antigenic topography of E3/19K we carried out site-directed mutagenesis and raised monoclonal antibodies (mAbs) against a recombinant version of Ad2 E3/19K comprising the lumenal domain followed by a C-terminal histidine tag. Using peptide scanning, the epitopes of three mAbs were mapped to different regions of the lumenal domain, comprising amino acids 3–13, 15–21 and 41–45, respectively. Interestingly, mAb 3F4 reacted only weakly with wild-type E3/19K, but showed drastically increased binding to mutant E3/19K molecules, e.g. those with disrupted disulfide bonds, suggesting that 3F4 can sense unfolding of the protein. MAb 10A2 binds to an epitope apparently buried within E3/19K while that of 3A9 is exposed. Secondary structure prediction suggests that the lumenal domain contains six β-strands and an α-helix adjacent to the transmembrane domain. Interestingly, all mAbs bind to non-structured loops. Using a large panel of E3/19K mutants the structural alterations of the mutations were determined. With this knowledge the panel of mAbs will be valuable tools to further dissect structure/function relationships of E3/19K regarding down regulation of MHC class I and MHC class I like molecules and its effect on both T cell and NK cell recognition

    Protein Secondary Structure Prediction Using Cascaded Convolutional and Recurrent Neural Networks

    Full text link
    Protein secondary structure prediction is an important problem in bioinformatics. Inspired by the recent successes of deep neural networks, in this paper, we propose an end-to-end deep network that predicts protein secondary structures from integrated local and global contextual features. Our deep architecture leverages convolutional neural networks with different kernel sizes to extract multiscale local contextual features. In addition, considering long-range dependencies existing in amino acid sequences, we set up a bidirectional neural network consisting of gated recurrent unit to capture global contextual features. Furthermore, multi-task learning is utilized to predict secondary structure labels and amino-acid solvent accessibility simultaneously. Our proposed deep network demonstrates its effectiveness by achieving state-of-the-art performance, i.e., 69.7% Q8 accuracy on the public benchmark CB513, 76.9% Q8 accuracy on CASP10 and 73.1% Q8 accuracy on CASP11. Our model and results are publicly available.Comment: 8 pages, 3 figures, Accepted by International Joint Conferences on Artificial Intelligence (IJCAI
    corecore