13,798 research outputs found

    2HOT: An Improved Parallel Hashed Oct-Tree N-Body Algorithm for Cosmological Simulation

    Full text link
    We report on improvements made over the past two decades to our adaptive treecode N-body method (HOT). A mathematical and computational approach to the cosmological N-body problem is described, with performance and scalability measured up to 256k (2182^{18}) processors. We present error analysis and scientific application results from a series of more than ten 69 billion (409634096^3) particle cosmological simulations, accounting for 4×10204 \times 10^{20} floating point operations. These results include the first simulations using the new constraints on the standard model of cosmology from the Planck satellite. Our simulations set a new standard for accuracy and scientific throughput, while meeting or exceeding the computational efficiency of the latest generation of hybrid TreePM N-body methods.Comment: 12 pages, 8 figures, 77 references; To appear in Proceedings of SC '1

    Learning Parallel Computations with ParaLab

    Full text link
    In this paper, we present the ParaLab teachware system, which can be used for learning the parallel computation methods. ParaLab provides the tools for simulating the multiprocessor computational systems with various network topologies, for carrying out the computational experiments in the simulation mode, and for evaluating the efficiency of the parallel computation methods. The visual presentation of the parallel computations taking place in the computational experiments is the key feature of the system. ParaLab can be used for the laboratory training within various teaching courses in the field of parallel, distributed, and supercomputer computations

    Fluid Communities: A Competitive, Scalable and Diverse Community Detection Algorithm

    Full text link
    We introduce a community detection algorithm (Fluid Communities) based on the idea of fluids interacting in an environment, expanding and contracting as a result of that interaction. Fluid Communities is based on the propagation methodology, which represents the state-of-the-art in terms of computational cost and scalability. While being highly efficient, Fluid Communities is able to find communities in synthetic graphs with an accuracy close to the current best alternatives. Additionally, Fluid Communities is the first propagation-based algorithm capable of identifying a variable number of communities in network. To illustrate the relevance of the algorithm, we evaluate the diversity of the communities found by Fluid Communities, and find them to be significantly different from the ones found by alternative methods.Comment: Accepted at the 6th International Conference on Complex Networks and Their Application

    Atmospheric dispersion of airborne pollen evidenced by near-surface and columnar measurements in Barcelona, Spain

    Get PDF
    Hourly measurements of pollen near-surface concentration and lidar-derived profiles of particle backscatter coefficients and of volume and particle depolarization ratios during a 5-day pollination event observed in Barcelona, Spain, between 27 – 31 March, 2015, are presented. Maximum hourly pollen concentrations of 4700 and 1200 m-3 h-1 were found for Platanus and Pinus, respectively, which represented together more than 80 % of the total pollen. Everyday a clear diurnal cycle caused by the vertical transport of the airborne pollen was visible on the lidar-derived profiles of the backscatter coefficient with maxima usually reached between 12 and 15 UT. A method based on the lidar polarization capabilities was used to retrieve the contribution of the pollen to the total signal. On average the diurnal (9 – 17 UT) pollen aerosol optical depth (AOD) was 0.05 which represented 29 % of the total AOD, the volume and particle depolarization ratios in the pollen plume were 0.08 and 0.14, respectively, and the diurnal mean of the height of the pollen plume was found at 1.24 km. The dispersion of the Platanus and Pinus in the atmosphere was simulated with the Nonhydrostatic Multiscale Meteorological Model on the B grid at the Barcelona Supercomputing Center with a newly developed Chemical Transport Model (NMMB/BSC-CTM). Model near-surface daily concentrations were compared to our observations at two sites: in Barcelona and Bellaterra (12 km NE of Barcelona). Model hourly concentrations were compared to our observations in Barcelona.Peer ReviewedPostprint (author's final draft

    Saharan dust deposition may affect phytoplankton growth in the mediterranean sea at ecological time scales

    Get PDF
    The surface waters of the Mediterranean Sea are extremely poor in the nutrients necessary for plankton growth. At the same time, the Mediterranean Sea borders with the largest and most active desert areas in the world and the atmosphere over the basin is subject to frequent injections of mineral dust particles. We describe statistical correlations between dust deposition over the Mediterranean Sea and surface chlorophyll concentrations at ecological time scales. Aerosol deposition of Saharan origin may explain 1 to 10% (average 5%) of seasonally detrended chlorophyll variability in the low nutrient-low chlorophyll Mediterranean. Most of the statistically significant correlations are positive with main effects in spring over the Eastern and Central Mediterranean, conforming to a view of dust events fueling needed nutrients to the planktonic community. Some areas show negative effects of dust deposition on chlorophyll, coinciding with regions under a large influence of aerosols from European origin. The influence of dust deposition on chlorophyll dynamics may become larger in future scenarios of increased aridity and shallowing of the mixed layerPostprint (published version
    corecore