1,005,241 research outputs found

    A Practical Procedure to Integrate the First 1:500 Urban Map of Valencia into a Tile-Based Geospatial Information System

    Full text link
    [EN] The use of geographic data from early maps is a common approach to understanding urban geography as well as to study the evolution of cities over time. The specific goal of this paper is to provide a means for the integration of the first 1:500 urban map of the city of Valencia (Spain) on a tile-based geospatial system. We developed a workflow consisting of three stages: the digitization of the original 421 map sheets, the transformation to the European Terrestrial Reference System of 1989 (ETRS89), and the conversion to a tile-based file format, where the second stage is clearly the most mathematically involved. The second stage actually consists of two steps, one transformation from the pixel reference system to the 1929 local reference system followed by a second transformation from the 1929 local to the ETRS89 system. The last stage comprises a map reprojection to adapt to tile-based geospatial standards. The paper describes a pilot study of one map sheet and results showed that the affine and bilinear transformations performed well in both transformations with average residuals under 6 and 3 cm respectively. The online viewer developed in this study shows that the derived tile-based map conforms to common standards and lines up well with other raster and vector datasets.Villar-Cano, M.; JimĂ©nez-MartĂ­nez, MJ.; MarquĂ©s-Mateu, Á. (2019). A Practical Procedure to Integrate the First 1:500 Urban Map of Valencia into a Tile-Based Geospatial Information System. ISPRS International Journal of Geo-Information. 8(9). https://doi.org/10.3390/ijgi809037837889Bitelli, G., & Gatta, G. (2011). Digital Processing and 3D Modelling of an 18th Century Scenographic Map of Bologna. Advances in Cartography and GIScience. Volume 2, 129-146. doi:10.1007/978-3-642-19214-2_9Brovelli, M. A., Minghini, M., Giori, G., & Beretta, M. (2012). Web Geoservices and Ancient Cadastral Maps: The Web C.A.R.T.E. Project. Transactions in GIS, 16(2), 125-142. doi:10.1111/j.1467-9671.2012.01311.xBitelli, G., Cremonini, S., & Gatta, G. (2014). Cartographic heritage: Toward unconventional methods for quantitative analysis of pre-geodetic maps. Journal of Cultural Heritage, 15(2), 183-195. doi:10.1016/j.culher.2013.04.003CardesĂ­n DĂ­az, J. M., & Araujo, J. M. (2016). Historic Urbanization Process in Spain (1746–2013). Journal of Urban History, 43(1), 33-52. doi:10.1177/0096144215583481Villar-Cano, M., MarquĂ©s-Mateu, Á., & JimĂ©nez-MartĂ­nez, M. J. (2019). Triangulation network of 1929–1944 of the first 1:500 urban map of ValĂšncia. Survey Review, 52(373), 317-329. doi:10.1080/00396265.2018.1564599Chen, W., & Hill, C. (2005). Evaluation Procedure for Coordinate Transformation. Journal of Surveying Engineering, 131(2), 43-49. doi:10.1061/(asce)0733-9453(2005)131:2(43)ISO 19157:2013: Geographic Information—Data Qualityhttps://www.iso.org/standard/32575.htmlASPRS Positional Accuracy Standards for Digital Geospatial Datahttps://www.asprs.org/news-resources/asprs-positional-accuracy-standards-for-digital-geospatial-dataEven-Tzur, G. (2018). Coordinate transformation with variable number of parameters. Survey Review, 52(370), 62-68. doi:10.1080/00396265.2018.1517477Yuanxi, Y., & Tianhe, X. (2002). Combined method of datum transformation between different coordinate systems. Geo-spatial Information Science, 5(4), 5-9. doi:10.1007/bf02826467Lehmann, R. (2014). Transformation model selection by multiple hypotheses testing. Journal of Geodesy, 88(12), 1117-1130. doi:10.1007/s00190-014-0747-

    Siamese hierarchical attention networks for extractive summarization

    Full text link
    [EN] In this paper, we present an extractive approach to document summarization based on Siamese Neural Networks. Specifically, we propose the use of Hierarchical Attention Networks to select the most relevant sentences of a text to make its summary. We train Siamese Neural Networks using document-summary pairs to determine whether the summary is appropriated for the document or not. By means of a sentence-level attention mechanism the most relevant sentences in the document can be identified. Hence, once the network is trained, it can be used to generate extractive summaries. The experimentation carried out using the CNN/DailyMail summarization corpus shows the adequacy of the proposal. In summary, we propose a novel end-to-end neural network to address extractive summarization as a binary classification problem which obtains promising results in-line with the state-of-the-art on the CNN/DailyMail corpus.This work has been partially supported by the Spanish MINECO and FEDER founds under project AMIC (TIN2017-85854-C4-2-R). Work of Jose-Angel Gonzalez is also financed by Universitat Politecnica de Valencia under grant PAID-01-17.González-Barba, JÁ.; Segarra Soriano, E.; García-Granada, F.; Sanchís Arnal, E.; Hurtado Oliver, LF. (2019). Siamese hierarchical attention networks for extractive summarization. Journal of Intelligent & Fuzzy Systems. 36(5):4599-4607. https://doi.org/10.3233/JIFS-179011S45994607365N. Begum , M. Fattah , and F. Ren . Automatic text summarization using support vector machine 5(7) (2009), 1987–1996.J. Cheng and M. Lapata . Neural summarization by extracting sentences and words. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers, 2016.K.M. Hermann , T. Kocisky , E. Grefenstette , L. Espeholt , W. Kay , M. Suleyman , and P. Blunsom . Teaching machines to read and comprehend, CoRR, abs/1506.03340, 2015.D.P. Kingma and J. Ba . Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014.Lloret, E., & Palomar, M. (2011). Text summarisation in progress: a literature review. Artificial Intelligence Review, 37(1), 1-41. doi:10.1007/s10462-011-9216-zLouis, A., & Nenkova, A. (2013). Automatically Assessing Machine Summary Content Without a Gold Standard. Computational Linguistics, 39(2), 267-300. doi:10.1162/coli_a_00123Miao, Y., & Blunsom, P. (2016). Language as a Latent Variable: Discrete Generative Models for Sentence Compression. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. doi:10.18653/v1/d16-1031R. Mihalcea and P. Tarau . Textrank: Bringing order into text. In Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, 2004.T. Mikolov , K. Chen , G. S. Corrado , and J. Dean . Efficient estimation of word representations in vector space, CoRR, abs/1301.3781, 2013.Minaee, S., & Liu, Z. (2017). Automatic question-answering using a deep similarity neural network. 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP). doi:10.1109/globalsip.2017.8309095R. Paulus , C. Xiong , and R. Socher , A deep reinforced model for abstractive summarization. CoRR, abs/1705.04304, 2017.Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673-2681. doi:10.1109/78.650093See, A., Liu, P. J., & Manning, C. D. (2017). Get To The Point: Summarization with Pointer-Generator Networks. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). doi:10.18653/v1/p17-1099Takase, S., Suzuki, J., Okazaki, N., Hirao, T., & Nagata, M. (2016). Neural Headline Generation on Abstract Meaning Representation. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. doi:10.18653/v1/d16-1112G. Tur and R. De Mori . Spoken language understanding: Systems for extracting semantic information from speech, John Wiley & Sons, 2011

    Three dimensional analysis of particulates in mineral processing systems by cone beam X-ray microtomography

    Get PDF
    Journal ArticleIn general, X-ray-computed tomographic (CT) techniques are capable of providing three-dimensional images of the internal structure of opaque materials in a nondestructive manner. The unique cone beam geometry allows acquisition of all two-dimensional projections with only one rotation of the sample, thus providing for fast data acquisition and better X-ray utilization, as a complete two-dimensional detector array receives the cone-shaped flux of rays. Thus, an isotropic three-dimensional volume can be reconstructed without the mechanical translation and the stacking of sequential slices, as is the case for more conventional CT scanners. In this regard, a state-of-the-art, custom designed X-ray microtomography facility to provide very detailed three-dimensional spatial analysis of packed beds of multiphase particles was installed and is in operation at the University of Utah. The reconstructed three-dimensional tomographic volume allows for spatial resolution as small as 5 [imfor sample dimensions of up to 40 mm in diameter. Utilization of this custom-designed cone-beam X-ray microtomography facility for the analysis of particulate systems in three dimensions is discussed. Applications described include coal washability analysis for the design and operation of coal-preparation plants, liberation analysis for the evaluation of grinding practice and separation efficiency, mineral exposure analysis for the prediction of the ultimate recovery from heapleaching operations, three-dimensional particle shape analysis to classify particle populations and, finally, analysis of the pore-structure network of packed particle beds for simulation of flow through such porous structures as encountered infiltration and heap leaching. The initial results from these studies demonstrate the potential utility of detailed three-dimensional microCT information for improved design and operation of mineral processing methods

    Summarization of Spanish Talk Shows with Siamese Hierarchical Attention Networks

    Full text link
    [EN] In this paper, we present an approach to Spanish talk shows summarization. Our approach is based on the use of Siamese Neural Networks on the transcription of the show audios. Specifically, we propose to use Hierarchical Attention Networks to select the most relevant sentences for each speaker about a given topic in the show, in order to summarize his opinion about the topic. We train these networks in a siamese way to determine whether a summary is appropriate or not. Previous evaluation of this approach on summarization task of English newspapers achieved performances similar to other state-of-the-art systems. In the absence of enough transcribed or recognized speech data to train our system for talk show summarization in Spanish, we acquire a large corpus of document-summary pairs from Spanish newspapers and we use it to train our system. We choose this newspapers domain due to its high similarity with the topics addressed in talk shows. A preliminary evaluation of our summarization system on Spanish TV programs shows the adequacy of the proposal.This work has been partially supported by the Spanish MINECO and FEDER founds under project AMIC (TIN2017-85854-C4-2-R). Work of Jose-Angel Gonzalez is financed by Universitat Politecnica de Valencia under grant PAID-01-17.González-Barba, JÁ.; Hurtado Oliver, LF.; Segarra Soriano, E.; García-Granada, F.; Sanchís Arnal, E. (2019). Summarization of Spanish Talk Shows with Siamese Hierarchical Attention Networks. Applied Sciences. 9(18):1-13. https://doi.org/10.3390/app9183836S113918Carbonell, J., & Goldstein, J. (1998). The use of MMR, diversity-based reranking for reordering documents and producing summaries. Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval - SIGIR ’98. doi:10.1145/290941.291025Erkan, G., & Radev, D. R. (2004). LexRank: Graph-based Lexical Centrality as Salience in Text Summarization. Journal of Artificial Intelligence Research, 22, 457-479. doi:10.1613/jair.1523Lloret, E., & Palomar, M. (2011). Text summarisation in progress: a literature review. Artificial Intelligence Review, 37(1), 1-41. doi:10.1007/s10462-011-9216-zSee, A., Liu, P. J., & Manning, C. D. (2017). Get To The Point: Summarization with Pointer-Generator Networks. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). doi:10.18653/v1/p17-1099Narayan, S., Cohen, S. B., & Lapata, M. (2018). Ranking Sentences for Extractive Summarization with Reinforcement Learning. Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). doi:10.18653/v1/n18-1158González, J.-Á., Segarra, E., García-Granada, F., Sanchis, E., & Hurtado, L.-F. (2019). Siamese hierarchical attention networks for extractive summarization. Journal of Intelligent & Fuzzy Systems, 36(5), 4599-4607. doi:10.3233/jifs-179011Furui, S., Kikuchi, T., Shinnaka, Y., & Hori, C. (2004). Speech-to-Text and Speech-to-Speech Summarization of Spontaneous Speech. IEEE Transactions on Speech and Audio Processing, 12(4), 401-408. doi:10.1109/tsa.2004.828699Shih-Hung Liu, Kuan-Yu Chen, Chen, B., Hsin-Min Wang, Hsu-Chun Yen, & Wen-Lian Hsu. (2015). Combining Relevance Language Modeling and Clarity Measure for Extractive Speech Summarization. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 23(6), 957-969. doi:10.1109/taslp.2015.2414820Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E. (2016). Hierarchical Attention Networks for Document Classification. Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. doi:10.18653/v1/n16-1174Conneau, A., Kiela, D., Schwenk, H., Barrault, L., & Bordes, A. (2017). Supervised Learning of Universal Sentence Representations from Natural Language Inference Data. Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. doi:10.18653/v1/d17-1070Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391-407. doi:10.1002/(sici)1097-4571(199009)41:63.0.co;2-

    Automatic classification of human facial features based on their appearance

    Full text link
    [EN] Classification or typology systems used to categorize different human body parts have existed for many years. Nevertheless, there are very few taxonomies of facial features. Ergonomics, forensic anthropology, crime prevention or new human-machine interaction systems and online activities, like e-commerce, e-learning, games, dating or social networks, are fields in which classifications of facial features are useful, for example, to create digital interlocutors that optimize the interactions between human and machines. However, classifying isolated facial features is difficult for human observers. Previous works reported low inter-observer and intra-observer agreement in the evaluation of facial features. This work presents a computer-based procedure to automatically classify facial features based on their global appearance. This procedure deals with the difficulties associated with classifying features using judgements from human observers, and facilitates the development of taxonomies of facial features. Taxonomies obtained through this procedure are presented for eyes, mouths and noses.Fuentes-Hurtado, F.; Diego-Mas, JA.; Naranjo Ornedo, V.; Alcañiz Raya, ML. (2019). Automatic classification of human facial features based on their appearance. PLoS ONE. 14(1):1-20. https://doi.org/10.1371/journal.pone.0211314S120141Damasio, A. R. (1985). Prosopagnosia. Trends in Neurosciences, 8, 132-135. doi:10.1016/0166-2236(85)90051-7Bruce, V., & Young, A. (1986). Understanding face recognition. British Journal of Psychology, 77(3), 305-327. doi:10.1111/j.2044-8295.1986.tb02199.xTodorov, A. (2011). Evaluating Faces on Social Dimensions. Social Neuroscience, 54-76. doi:10.1093/acprof:oso/9780195316872.003.0004Little, A. C., Burriss, R. P., Jones, B. C., & Roberts, S. C. (2007). Facial appearance affects voting decisions. Evolution and Human Behavior, 28(1), 18-27. doi:10.1016/j.evolhumbehav.2006.09.002Porter, J. P., & Olson, K. L. (2001). Anthropometric Facial Analysis of the African American Woman. Archives of Facial Plastic Surgery, 3(3), 191-197. doi:10.1001/archfaci.3.3.191GĂŒndĂŒz Arslan, S., Genç, C., OdabaƟ, B., & Devecioğlu Kama, J. (2007). Comparison of Facial Proportions and Anthropometric Norms Among Turkish Young Adults With Different Face Types. Aesthetic Plastic Surgery, 32(2), 234-242. doi:10.1007/s00266-007-9049-yFerring, V., & Pancherz, H. (2008). Divine proportions in the growing face. American Journal of Orthodontics and Dentofacial Orthopedics, 134(4), 472-479. doi:10.1016/j.ajodo.2007.03.027Mane, D. R., Kale, A. D., Bhai, M. B., & Hallikerimath, S. (2010). Anthropometric and anthroposcopic analysis of different shapes of faces in group of Indian population: A pilot study. Journal of Forensic and Legal Medicine, 17(8), 421-425. doi:10.1016/j.jflm.2010.09.001Ritz-Timme, S., Gabriel, P., Tutkuviene, J., Poppa, P., ObertovĂĄ, Z., Gibelli, D., 
 Cattaneo, C. (2011). Metric and morphological assessment of facial features: A study on three European populations. Forensic Science International, 207(1-3), 239.e1-239.e8. doi:10.1016/j.forsciint.2011.01.035Ritz-Timme, S., Gabriel, P., ObertovĂ , Z., Boguslawski, M., Mayer, F., Drabik, A., 
 Cattaneo, C. (2010). A new atlas for the evaluation of facial features: advantages, limits, and applicability. International Journal of Legal Medicine, 125(2), 301-306. doi:10.1007/s00414-010-0446-4Kong, S. G., Heo, J., Abidi, B. R., Paik, J., & Abidi, M. A. (2005). Recent advances in visual and infrared face recognition—a review. Computer Vision and Image Understanding, 97(1), 103-135. doi:10.1016/j.cviu.2004.04.001Tavares, G., MourĂŁo, A., & MagalhĂŁes, J. (2016). Crowdsourcing facial expressions for affective-interaction. Computer Vision and Image Understanding, 147, 102-113. doi:10.1016/j.cviu.2016.02.001Buckingham, G., DeBruine, L. M., Little, A. C., Welling, L. L. M., Conway, C. A., Tiddeman, B. P., & Jones, B. C. (2006). Visual adaptation to masculine and feminine faces influences generalized preferences and perceptions of trustworthiness. Evolution and Human Behavior, 27(5), 381-389. doi:10.1016/j.evolhumbehav.2006.03.001Boberg M, Piippo P, Ollila E. Designing Avatars. DIMEA ‘08 Proc 3rd Int Conf Digit Interact Media Entertain Arts. ACM; 2008; 232–239. doi: https://doi.org/10.1145/1413634.1413679Rojas Q., M., Masip, D., Todorov, A., & Vitria, J. (2011). Automatic Prediction of Facial Trait Judgments: Appearance vs. Structural Models. PLoS ONE, 6(8), e23323. doi:10.1371/journal.pone.0023323Laurentini, A., & Bottino, A. (2014). Computer analysis of face beauty: A survey. Computer Vision and Image Understanding, 125, 184-199. doi:10.1016/j.cviu.2014.04.006Alemany S, Gonzalez J, Nacher B, Soriano C, Arnaiz C, Heras H. Anthropometric survey of the Spanish female population aimed at the apparel industry. Proceedings of the 2010 Intl Conference on 3D Body scanning Technologies. 2010. pp. 307–315.VinuĂ©, G., Epifanio, I., & Alemany, S. (2015). Archetypoids: A new approach to define representative archetypal data. Computational Statistics & Data Analysis, 87, 102-115. doi:10.1016/j.csda.2015.01.018Jee, S., & Yun, M. H. (2016). An anthropometric survey of Korean hand and hand shape types. International Journal of Industrial Ergonomics, 53, 10-18. doi:10.1016/j.ergon.2015.10.004Kim, N.-S., & Do, W.-H. (2014). Classification of Elderly Women’s Foot Type. Journal of the Korean Society of Clothing and Textiles, 38(3), 305-320. doi:10.5850/jksct.2014.38.3.305Sarakon P, Charoenpong T, Charoensiriwath S. Face shape classification from 3D human data by using SVM. The 7th 2014 Biomedical Engineering International Conference. IEEE; 2014. pp. 1–5. doi: https://doi.org/10.1109/BMEiCON.2014.7017382PRESTON, T. A., & SINGH, M. (1972). Redintegrated Somatotyping. Ergonomics, 15(6), 693-700. doi:10.1080/00140137208924469Lin, Y.-L., & Lee, K.-L. (1999). Investigation of anthropometry basis grouping technique for subject classification. Ergonomics, 42(10), 1311-1316. doi:10.1080/001401399184965Malousaris, G. G., Bergeles, N. K., Barzouka, K. G., Bayios, I. A., Nassis, G. P., & Koskolou, M. D. (2008). Somatotype, size and body composition of competitive female volleyball players. Journal of Science and Medicine in Sport, 11(3), 337-344. doi:10.1016/j.jsams.2006.11.008Carvalho, P. V. R., dos Santos, I. L., Gomes, J. O., Borges, M. R. S., & Guerlain, S. (2008). Human factors approach for evaluation and redesign of human–system interfaces of a nuclear power plant simulator. Displays, 29(3), 273-284. doi:10.1016/j.displa.2007.08.010Fabri M, Moore D. The use of emotionally expressive avatars in Collaborative Virtual Environments. AISB’05 Convention:Proceedings of the Joint Symposium on Virtual Social Agents: Social Presence Cues for Virtual Humanoids Empathic Interaction with Synthetic Characters Mind Minding Agents. 2005. pp. 88–94. doi:citeulike-article-id:790934Sukhija, P., Behal, S., & Singh, P. (2016). Face Recognition System Using Genetic Algorithm. Procedia Computer Science, 85, 410-417. doi:10.1016/j.procs.2016.05.183Trescak T, Bogdanovych A, Simoff S, Rodriguez I. Generating diverse ethnic groups with genetic algorithms. Proceedings of the 18th ACM symposium on Virtual reality software and technology—VRST ‘12. New York, New York, USA: ACM Press; 2012. p. 1. doi: https://doi.org/10.1145/2407336.2407338Vanezis, P., Lu, D., Cockburn, J., Gonzalez, A., McCombe, G., Trujillo, O., & Vanezis, M. (1996). Morphological Classification of Facial Features in Adult Caucasian Males Based on an Assessment of Photographs of 50 Subjects. Journal of Forensic Sciences, 41(5), 13998J. doi:10.1520/jfs13998jTamir, A. (2011). Numerical Survey of the Different Shapes of the Human Nose. Journal of Craniofacial Surgery, 22(3), 1104-1107. doi:10.1097/scs.0b013e3182108eb3Tamir, A. (2013). Numerical Survey of the Different Shapes of Human Chin. Journal of Craniofacial Surgery, 24(5), 1657-1659. doi:10.1097/scs.0b013e3182942b77Richler, J. J., Cheung, O. S., & Gauthier, I. (2011). Holistic Processing Predicts Face Recognition. Psychological Science, 22(4), 464-471. doi:10.1177/0956797611401753Taubert, J., Apthorp, D., Aagten-Murphy, D., & Alais, D. (2011). The role of holistic processing in face perception: Evidence from the face inversion effect. Vision Research, 51(11), 1273-1278. doi:10.1016/j.visres.2011.04.002Donnelly, N., & Davidoff, J. (1999). The Mental Representations of Faces and Houses: Issues Concerning Parts and Wholes. Visual Cognition, 6(3-4), 319-343. doi:10.1080/135062899395000Davidoff, J., & Donnelly, N. (1990). Object superiority: A comparison of complete and part probes. Acta Psychologica, 73(3), 225-243. doi:10.1016/0001-6918(90)90024-aTanaka, J. W., & Farah, M. J. (1993). Parts and Wholes in Face Recognition. The Quarterly Journal of Experimental Psychology Section A, 46(2), 225-245. doi:10.1080/14640749308401045Wang, R., Li, J., Fang, H., Tian, M., & Liu, J. (2012). Individual Differences in Holistic Processing Predict Face Recognition Ability. Psychological Science, 23(2), 169-177. doi:10.1177/0956797611420575Rhodes, G., Ewing, L., Hayward, W. G., Maurer, D., Mondloch, C. J., & Tanaka, J. W. (2009). Contact and other-race effects in configural and component processing of faces. British Journal of Psychology, 100(4), 717-728. doi:10.1348/000712608x396503Miller, G. A. (1994). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 101(2), 343-352. doi:10.1037/0033-295x.101.2.343Scharff, A., Palmer, J., & Moore, C. M. (2011). Evidence of fixed capacity in visual object categorization. Psychonomic Bulletin & Review, 18(4), 713-721. doi:10.3758/s13423-011-0101-1Meyers, E., & Wolf, L. (2007). Using Biologically Inspired Features for Face Processing. International Journal of Computer Vision, 76(1), 93-104. doi:10.1007/s11263-007-0058-8Cootes, T. F., Edwards, G. J., & Taylor, C. J. (2001). Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6), 681-685. doi:10.1109/34.927467Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face Description with Local Binary Patterns: Application to Face Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 2037-2041. doi:10.1109/tpami.2006.244Belhumeur, P. N., Hespanha, J. P., & Kriegman, D. J. (1997). Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 711-720. doi:10.1109/34.598228Turk, M., & Pentland, A. (1991). Eigenfaces for Recognition. Journal of Cognitive Neuroscience, 3(1), 71-86. doi:10.1162/jocn.1991.3.1.71Klare B, Jain AK. On a taxonomy of facial features. IEEE 4th International Conference on Biometrics: Theory, Applications and Systems, BTAS 2010. IEEE; 2010. pp. 1–8. doi: https://doi.org/10.1109/BTAS.2010.5634533Chihaoui, M., Elkefi, A., Bellil, W., & Ben Amar, C. (2016). A Survey of 2D Face Recognition Techniques. Computers, 5(4), 21. doi:10.3390/computers5040021Ma, D. S., Correll, J., & Wittenbrink, B. (2015). The Chicago face database: A free stimulus set of faces and norming data. Behavior Research Methods, 47(4), 1122-1135. doi:10.3758/s13428-014-0532-5Asthana A, Zafeiriou S, Cheng S, Pantic M. Incremental face alignment in the wild. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2014. pp. 1859–1866. doi: https://doi.org/10.1109/CVPR.2014.240Bag S, Barik S, Sen P, Sanyal G. A statistical nonparametric approach of face recognition: combination of eigenface & modified k-means clustering. Proceedings Second International Conference on Information Processing. 2008. p. 198.Doukas, C., & Maglogiannis, I. (2010). A Fast Mobile Face Recognition System for Android OS Based on Eigenfaces Decomposition. Artificial Intelligence Applications and Innovations, 295-302. doi:10.1007/978-3-642-16239-8_39Huang P, Huang Y, Wang W, Wang L. Deep embedding network for clustering. Proceedings—International Conference on Pattern Recognition. 2014. pp. 1532–1537. doi: https://doi.org/10.1109/ICPR.2014.272Dizaji KG, Herandi A, Deng C, Cai W, Huang H. Deep Clustering via Joint Convolutional Autoencoder Embedding and Relative Entropy Minimization. Proceedings of the IEEE International Conference on Computer Vision. 2017. doi: https://doi.org/10.1109/ICCV.2017.612Xie J, Girshick R, Farhadi A. Unsupervised deep embedding for clustering analysis [Internet]. Proceedings of the 33rd International Conference on International Conference on Machine Learning—Volume 48. JMLR.org; 2016. pp. 478–487. Available: https://dl.acm.org/citation.cfm?id=3045442Nousi, P., & Tefas, A. (2017). Discriminatively Trained Autoencoders for Fast and Accurate Face Recognition. Communications in Computer and Information Science, 205-215. doi:10.1007/978-3-319-65172-9_18Sirovich, L., & Kirby, M. (1987). Low-dimensional procedure for the characterization of human faces. Journal of the Optical Society of America A, 4(3), 519. doi:10.1364/josaa.4.00051

    Hypermedia-based discovery for source selection using low-cost linked data interfaces

    Get PDF
    Evaluating federated Linked Data queries requires consulting multiple sources on the Web. Before a client can execute queries, it must discover data sources, and determine which ones are relevant. Federated query execution research focuses on the actual execution, while data source discovery is often marginally discussed-even though it has a strong impact on selecting sources that contribute to the query results. Therefore, the authors introduce a discovery approach for Linked Data interfaces based on hypermedia links and controls, and apply it to federated query execution with Triple Pattern Fragments. In addition, the authors identify quantitative metrics to evaluate this discovery approach. This article describes generic evaluation measures and results for their concrete approach. With low-cost data summaries as seed, interfaces to eight large real-world datasets can discover each other within 7 minutes. Hypermedia-based client-side querying shows a promising gain of up to 50% in execution time, but demands algorithms that visit a higher number of interfaces to improve result completeness

    Natural language processing

    Get PDF
    Beginning with the basic issues of NLP, this chapter aims to chart the major research activities in this area since the last ARIST Chapter in 1996 (Haas, 1996), including: (i) natural language text processing systems - text summarization, information extraction, information retrieval, etc., including domain-specific applications; (ii) natural language interfaces; (iii) NLP in the context of www and digital libraries ; and (iv) evaluation of NLP systems
    • 

    corecore