388 research outputs found

    On the representation theory of finite J-trivial monoids

    Full text link
    In 1979, Norton showed that the representation theory of the 0-Hecke algebra admits a rich combinatorial description. Her constructions rely heavily on some triangularity property of the product, but do not use explicitly that the 0-Hecke algebra is a monoid algebra. The thesis of this paper is that considering the general setting of monoids admitting such a triangularity, namely J-trivial monoids, sheds further light on the topic. This is a step to use representation theory to automatically extract combinatorial structures from (monoid) algebras, often in the form of posets and lattices, both from a theoretical and computational point of view, and with an implementation in Sage. Motivated by ongoing work on related monoids associated to Coxeter systems, and building on well-known results in the semi-group community (such as the description of the simple modules or the radical), we describe how most of the data associated to the representation theory (Cartan matrix, quiver) of the algebra of any J-trivial monoid M can be expressed combinatorially by counting appropriate elements in M itself. As a consequence, this data does not depend on the ground field and can be calculated in O(n^2), if not O(nm), where n=|M| and m is the number of generators. Along the way, we construct a triangular decomposition of the identity into orthogonal idempotents, using the usual M\"obius inversion formula in the semi-simple quotient (a lattice), followed by an algorithmic lifting step. Applying our results to the 0-Hecke algebra (in all finite types), we recover previously known results and additionally provide an explicit labeling of the edges of the quiver. We further explore special classes of J-trivial monoids, and in particular monoids of order preserving regressive functions on a poset, generalizing known results on the monoids of nondecreasing parking functions.Comment: 41 pages; 4 figures; added Section 3.7.4 in version 2; incorporated comments by referee in version

    The biHecke monoid of a finite Coxeter group and its representations

    Full text link
    For any finite Coxeter group W, we introduce two new objects: its cutting poset and its biHecke monoid. The cutting poset, constructed using a generalization of the notion of blocks in permutation matrices, almost forms a lattice on W. The construction of the biHecke monoid relies on the usual combinatorial model for the 0-Hecke algebra H_0(W), that is, for the symmetric group, the algebra (or monoid) generated by the elementary bubble sort operators. The authors previously introduced the Hecke group algebra, constructed as the algebra generated simultaneously by the bubble sort and antisort operators, and described its representation theory. In this paper, we consider instead the monoid generated by these operators. We prove that it admits |W| simple and projective modules. In order to construct the simple modules, we introduce for each w in W a combinatorial module T_w whose support is the interval [1,w]_R in right weak order. This module yields an algebra, whose representation theory generalizes that of the Hecke group algebra, with the combinatorics of descents replaced by that of blocks and of the cutting poset.Comment: v2: Added complete description of the rank 2 case (Section 7.3) and improved proof of Proposition 7.5. v3: Final version (typo fixes, picture improvements) 66 pages, 9 figures Algebra and Number Theory, 2013. arXiv admin note: text overlap with arXiv:1108.4379 by other author

    The biHecke monoid of a finite Coxeter group

    Full text link
    The usual combinatorial model for the 0-Hecke algebra of the symmetric group is to consider the algebra (or monoid) generated by the bubble sort operators. This construction generalizes to any finite Coxeter group W. The authors previously introduced the Hecke group algebra, constructed as the algebra generated simultaneously by the bubble sort and antisort operators, and described its representation theory. In this paper, we consider instead the monoid generated by these operators. We prove that it has |W| simple and projective modules. In order to construct a combinatorial model for the simple modules, we introduce for each w in W a combinatorial module whose support is the interval [1,w] in right weak order. This module yields an algebra, whose representation theory generalizes that of the Hecke group algebra. This involves the introduction of a w-analogue of the combinatorics of descents of W and a generalization to finite Coxeter groups of blocks of permutation matrices.Comment: 12 pages, 1 figure, submitted to FPSAC'1

    Combinatorial Markov chains on linear extensions

    Full text link
    We consider generalizations of Schuetzenberger's promotion operator on the set L of linear extensions of a finite poset of size n. This gives rise to a strongly connected graph on L. By assigning weights to the edges of the graph in two different ways, we study two Markov chains, both of which are irreducible. The stationary state of one gives rise to the uniform distribution, whereas the weights of the stationary state of the other has a nice product formula. This generalizes results by Hendricks on the Tsetlin library, which corresponds to the case when the poset is the anti-chain and hence L=S_n is the full symmetric group. We also provide explicit eigenvalues of the transition matrix in general when the poset is a rooted forest. This is shown by proving that the associated monoid is R-trivial and then using Steinberg's extension of Brown's theory for Markov chains on left regular bands to R-trivial monoids.Comment: 35 pages, more examples of promotion, rephrased the main theorems in terms of discrete time Markov chain

    Markov chains, R\mathscr R-trivial monoids and representation theory

    Full text link
    We develop a general theory of Markov chains realizable as random walks on R\mathscr R-trivial monoids. It provides explicit and simple formulas for the eigenvalues of the transition matrix, for multiplicities of the eigenvalues via M\"obius inversion along a lattice, a condition for diagonalizability of the transition matrix and some techniques for bounding the mixing time. In addition, we discuss several examples, such as Toom-Tsetlin models, an exchange walk for finite Coxeter groups, as well as examples previously studied by the authors, such as nonabelian sandpile models and the promotion Markov chain on posets. Many of these examples can be viewed as random walks on quotients of free tree monoids, a new class of monoids whose combinatorics we develop.Comment: Dedicated to Stuart Margolis on the occasion of his sixtieth birthday; 71 pages; final version to appear in IJA

    Representation Theory of Finite Semigroups, Semigroup Radicals and Formal Language Theory

    Full text link
    In this paper we characterize the congruence associated to the direct sum of all irreducible representations of a finite semigroup over an arbitrary field, generalizing results of Rhodes for the field of complex numbers. Applications are given to obtain many new results, as well as easier proofs of several results in the literature, involving: triangularizability of finite semigroups; which semigroups have (split) basic semigroup algebras, two-sided semidirect product decompositions of finite monoids; unambiguous products of rational languages; products of rational languages with counter; and \v{C}ern\'y's conjecture for an important class of automata

    Effective dimension of finite semigroups

    Get PDF
    In this paper we discuss various aspects of the problem of determining the minimal dimension of an injective linear representation of a finite semigroup over a field. We outline some general techniques and results, and apply them to numerous examples.Comment: To appear in J. Pure Appl. Al

    Directed nonabelian sandpile models on trees

    Full text link
    We define two general classes of nonabelian sandpile models on directed trees (or arborescences) as models of nonequilibrium statistical phenomena. These models have the property that sand grains can enter only through specified reservoirs, unlike the well-known abelian sandpile model. In the Trickle-down sandpile model, sand grains are allowed to move one at a time. For this model, we show that the stationary distribution is of product form. In the Landslide sandpile model, all the grains at a vertex topple at once, and here we prove formulas for all eigenvalues, their multiplicities, and the rate of convergence to stationarity. The proofs use wreath products and the representation theory of monoids.Comment: 43 pages, 5 figures; introduction improve

    Quivers of monoids with basic algebras

    Full text link
    We compute the quiver of any monoid that has a basic algebra over an algebraically closed field of characteristic zero. More generally, we reduce the computation of the quiver over a splitting field of a class of monoids that we term rectangular monoids (in the semigroup theory literature the class is known as DO\mathbf{DO}) to representation theoretic computations for group algebras of maximal subgroups. Hence in good characteristic for the maximal subgroups, this gives an essentially complete computation. Since groups are examples of rectangular monoids, we cannot hope to do better than this. For the subclass of R\mathscr R-trivial monoids, we also provide a semigroup theoretic description of the projective indecomposables and compute the Cartan matrix.Comment: Minor corrections and improvements to exposition were made. Some theorem statements were simplified. Also we made a language change. Several of our results are more naturally expressed using the language of Karoubi envelopes and irreducible morphisms. There are no substantial changes in actual result
    corecore