505 research outputs found

    Power Reductions with Energy Recovery Using Resonant Topologies

    Get PDF
    The problem of power densities in system-on-chips (SoCs) and processors has become more exacerbated recently, resulting in high cooling costs and reliability issues. One of the largest components of power consumption is the low skew clock distribution network (CDN), driving large load capacitance. This can consume as much as 70% of the total dynamic power that is lost as heat, needing elaborate sensing and cooling mechanisms. To mitigate this, resonant clocking has been utilized in several applications over the past decade. An improved energy recovering reconfigurable generalized series resonance (GSR) solution with all the critical support circuitry is developed in this work. This LC resonant clock driver is shown to save about 50% driver power (\u3e40% overall), on a 22nm process node and has 50% less skew than a non-resonant driver at 2GHz. It can operate down to 0.2GHz to support other energy savings techniques like dynamic voltage and frequency scaling (DVFS). As an example, GSR can be configured for the simpler pulse series resonance (PSR) operation to enable further power saving for double data rate (DDR) applications, by using de-skewing latches instead of flip-flop banks. A PSR based subsystem for 40% savings in clocking power with 40% driver active area reduction xii is demonstrated. This new resonant driver generates tracking pulses at each transition of clock for dual edge operation across DVFS. PSR clocking is designed to drive explicit-pulsed latches with negative setup time. Simulations using 45nm IBM/PTM device and interconnect technology models, clocking 1024 flip-flops show the reductions, compared to non-resonant clocking. DVFS range from 2GHz/1.3V to 200MHz/0.5V is obtained. The PSR frequency is set \u3e3× the clock rate, needing only 1/10th the inductance of prior-art LC resonance schemes. The skew reductions are achieved without needing to increase the interconnect widths owing to negative set-up times. Applications in data circuits are shown as well with a 90nm example. Parallel resonant and split-driver non-resonant configurations as well are derived from GSR. Tradeoffs in timing performance versus power, based on theoretical analysis, are compared for the first time and verified. This enables synthesis of an optimal topology for a given application from the GSR

    Analog-Digital System Modeling for Electromagnetic Susceptibility Prediction

    Get PDF
    The thesis is focused on the noise susceptibility of communication networks. These analog-mixed signal systems operate in an electrically noisy environment, in presence of multiple equipments connected by means of long wiring. Every module communicates using a transceiver as an interface between the local digital signaling and the data transmission through the network. Hence, the performance of the IC transceiver when affected by disturbances is one of the main factors that guarantees the EM immunity of the whole equipment. The susceptibility to RF and transient disturbances is addressed at component level on a CAN transceiver as a test case, highlighting the IC features critical for noise immunity. A novel procedure is proposed for the IC modeling for mixed-signal immunity simulations of communication networks. The procedure is based on a gray-box approach, modeling IC ports with a physical circuit and the internal links with a behavioural block. The parameters are estimated from time and frequency domain measurements, allowing accurate and efficient reproduction of non-linear device switching behaviours. The effectiveness of the modeling process is verified by applying the proposed technique to a CAN transceiver, involved in a real immunity test on a data communication link. The obtained model is successfully implemented in a commercial solver to predict both the functional signals and the RF noise immunity at component level. The noise immunity at system level is then evaluated on a complete communication network, analyzing the results of several tests on a realistic CAN bus. After developing models for wires and injection probes, a noise immunity test in avionic environment is carried out in a simulation environment, observing good overall accuracy and efficiency

    Digital enhancement techniques for fractional-N frequency synthesizers

    Get PDF
    Meeting the demand for unprecedented connectivity in the era of internet-of-things (IoT) requires extremely energy efficient operation of IoT nodes to extend battery life. Managing the data traffic generated by trillions of such nodes also puts severe energy constraints on the data centers. Clock generators that are essential elements in these systems consume significant power and therefore must be optimized for low power and high performance. The focus of this thesis is on improving the energy efficiency of frequency synthesizers and clocking modules by exploring design techniques at both the architectural and circuit levels. In the first part of this work, a digital fractional-N phase locked loop (FNPLL) that employs a high resolution time-to-digital converter (TDC) and a truly ΔΣ fractional divider to achieve low in-band noise with a wide bandwidth is presented. The fractional divider employs a digital-to-time converter (DTC) to cancel out ΔΣ quantization noise in time domain, thus alleviating TDC dynamic range requirements. The proposed digital architecture adopts a narrow range low-power time-amplifier based TDC (TA-TDC) to achieve sub 1ps resolution. Fabricated in 65nm CMOS process, the prototype PLL achieves better than -106dBc/Hz in-band noise and 3MHz PLL bandwidth at 4.5GHz output frequency using 50MHz reference. The PLL achieves excellent jitter performance of 490fsrms, while consumes only 3.7mW. This translates to the best reported jitter-power figure-of-merit (FoM) of -240.5dB among previously reported FNPLLs. Phase noise performance of ring oscillator based digital FNPLLs is severely compromised by conflicting bandwidth requirements to simultaneously suppress oscillator phase and quantization noise introduced by the TDC, ΔΣ fractional divider, and digital-to-analog converter (DAC). As a consequence, their FoM that quantifies the power-jitter tradeoff is at least 25dB worse than their LC-oscillator based FNPLL counterparts. In the second part of this thesis, we seek to close this performance gap by extending PLL bandwidth using quantization noise cancellation techniques and by employing a dual-path digital loop filter to suppress the detrimental impact of DAC quantization noise. A prototype was implemented in a 65nm CMOS process operating over a wide frequency range of 2.0GHz-5.5GHz using a modified extended range multi-modulus divider with seamless switching. The proposed digital FNPLL achieves 1.9psrms integrated jitter while consuming only 4mW at 5GHz output. The measured in-band phase noise is better than -96 dBc/Hz at 1MHz offset. The proposed FNPLL achieves wide bandwidth up to 6MHz using a 50 MHz reference and its FoM is -228.5dB, which is at about 20dB better than previously reported ring-based digital FNPLLs. In the third part, we propose a new multi-output clock generator architecture using open loop fractional dividers for system-on-chip (SoC) platforms. Modern multi-core processors use per core clocking, where each core runs at its own speed. The core frequency can be changed dynamically to optimize for performance or power dissipation using a dynamic frequency scaling (DFS) technique. Fast frequency switching is highly desirable as long as it does not interrupt code execution; therefore it requires smooth frequency transitions with no undershoots. The second main requirement in processor clocking is the capability of spread spectrum frequency modulation. By spreading the clock energy across a wide bandwidth, the electromagnetic interference (EMI) is dramatically reduced. A conventional PLL clock generation approach suffers from a slow frequency settling and limited spread spectrum modulation capabilities. The proposed open loop fractional divider architecture overcomes the bandwidth limitation in fractional-N PLLs. The fractional divider switches the output frequency instantaneously and provides an excellent spread spectrum performance, where precise and programmable modulation depth and frequency can be applied to satisfy different EMI requirements. The fractional divider has unlimited modulation bandwidth resulting in spread spectrum modulation with no filtering, unlike fractional-N PLL; consequently it achieves higher EMI reduction. A prototype fractional divider was implemented in a 65nm CMOS process, where the measured peak-to-peak jitter is less than 27ps over a wide frequency range from 20MHz to 1GHz. The total power consumption is about 3.2mW for 1GHz output frequency. The all-digital implementation of the divider occupies the smallest area of 0.017mm2 compared to state-of-the-art designs. As the data rate of serial links goes higher, the jitter requirements of the clock generator become more stringent. Improving the jitter performance of conventional PLLs to less than (200fsrms) always comes with a large power penalty (tens of mWs). This is due to the PLL coupled noise bandwidth trade-off, which imposes stringent noise requirements on the oscillator and/or loop components. Alternatively, an injection-locked clock multiplier (ILCM) provides many advantages in terms of phase noise, power, and area compared to classical PLLs, but they suffer from a narrow lock-in range and a high sensitivity to PVT variations especially at a large multiplication factor (N). In the fourth part of this thesis, a low-jitter, low-power LC-based ILCM with a digital frequency-tracking loop (FTL) is presented. The proposed FTL relies on a new pulse gating technique to continuously tune the oscillator's free-running frequency. The FTL ensures robust operation across PVT variations and resolves the race condition existing in injection locked PLLs by decoupling frequency tuning from the injection path. As a result, the phase locking condition is only determined by the injection path. This work also introduces an accurate theoretical large-signal analysis for phase domain response (PDR) of injection locked oscillators (ILOs). The proposed PDR analysis captures the asymmetric nature of ILO's lock-in range, and the impact of frequency error on injection strength and phase noise performance. The proposed architecture and analysis are demonstrated by a prototype fabricated in 65 nm CMOS process with active area of 0.25mm2. The prototype ILCM multiplies the reference frequency by 64 to generate an output clock in the range of 6.75GHz-8.25GHz. A superior jitter performance of 190fsrms is achieved, while consuming only 2.25mW power. This translates to a best FoM of -251dB. Unlike conventional PLLs, ILCMs have been fundamentally limited to only integer-N operation and cannot synthesize fractional-N frequencies. In the last part of this thesis, we extend the merits of ILCMs to fractional-N and overcome this fundamental limitation. We employ DTC-based QNC techniques in order to align injected pulses to the oscillator's zero crossings, which enables it to pull the oscillator toward phase lock, thus realizing a fractional-N ILCM. Fabricated in 65nm CMOS process, a prototype 20-bit fractional-N ILCM with an output range of 6.75GHz-8.25GHz consumes only 3.25mW. It achieves excellent jitter performance of 110fsrms and 175fsrms in integer- and fractional-N modes respectively, which translates to the best-reported FoM in both integer- (-255dB) and fractional-N (-252dB) modes. The proposed fractional-N ILCM also features the first-reported rapid on/off capability, where the transient absolute jitter performance at wake-up is bounded below 4ps after less than 4ns. This demonstrates almost instantaneous phase settling. This unique capability enables tremendous energy saving by turning on the clock multiplier only when needed. This energy proportional operation leverages idle times to save power at the system-level of wireline and wireless transceivers

    Harnessing optical micro-combs for microwave photonics

    Full text link
    In the past decade, optical frequency combs generated by high-Q micro-resonators, or micro-combs, which feature compact device footprints, high energy efficiency, and high-repetition-rates in broad optical bandwidths, have led to a revolution in a wide range of fields including metrology, mode-locked lasers, telecommunications, RF photonics, spectroscopy, sensing, and quantum optics. Among these, an application that has attracted great interest is the use of micro-combs for RF photonics, where they offer enhanced functionalities as well as reduced size and power consumption over other approaches. This article reviews the recent advances in this emerging field. We provide an overview of the main achievements that have been obtained to date, and highlight the strong potential of micro-combs for RF photonics applications. We also discuss some of the open challenges and limitations that need to be met for practical applications.Comment: 32 Pages, 13 Figures, 172 Reference

    High-Speed Low-Voltage Line Driver for SerDes Applications

    Get PDF
    The driving factor behind this research was to design & develop a line driver capable of meeting the demanding specifications of the next generation of SerDes devices. In this thesis various line driver topologies were analysed to identify a topology suited for a high-speed low-voltage operating environment. This thesis starts of by introducing a relatively new high-speed communication Device called SerDes. SerDes is used in wired chip-to-chip communications and operates by converting a parallel data stream in a serial data stream that can be then transmitted at a higher bit rate, existing SerDes devices operate up to 12.5Gbps. A matching SerDes device at the destination will then convert the serial data stream back into a parallel data stream to be read by the destination ASIC. SerDes typically uses a line driver with a differential output. Using a differential line driver increases the resilience to outside sources of noise and reduces the amount of EM radiation produced by transmission. The focus of this research is to design and develop a line driver that can operate at 40Gbps and can function with a power supply of less than IV. This demanding specification was decided to be an accurate representation of future requirements that a line driver in a SerDes device will have to conform to. A suitable line driver with a differential output was identified to meet the demanding specifications and was modified so that it can perfonn an equalisation technique called pre-distortion. Two variations of the new topology were outlined and a behavioural model was created for both using Matlab Simulink. The behavioural model for both variants proved the concept, however only one variant maintained its perfomance once the designs were implemented at transistor level in Cadence, using a 65nm CMOS technology provided by Texas Instruments. The final line driver design was then converted into a layout design, again using Cadence, and RC parasitics were extracted to perfom a post-layout simulation. The post layout simulation shows that the novel line driver can operate at 40Gbps with a power supply of 1 V - O.8V and has a power consumption of 4.54m W /Gbps. The Deterministic Jitter added by the line driver is 12.9ps

    Multi-core devices for safety-critical systems: a survey

    Get PDF
    Multi-core devices are envisioned to support the development of next-generation safety-critical systems, enabling the on-chip integration of functions of different criticality. This integration provides multiple system-level potential benefits such as cost, size, power, and weight reduction. However, safety certification becomes a challenge and several fundamental safety technical requirements must be addressed, such as temporal and spatial independence, reliability, and diagnostic coverage. This survey provides a categorization and overview at different device abstraction levels (nanoscale, component, and device) of selected key research contributions that support the compliance with these fundamental safety requirements.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness under grant TIN2015-65316-P, Basque Government under grant KK-2019-00035 and the HiPEAC Network of Excellence. The Spanish Ministry of Economy and Competitiveness has also partially supported Jaume Abella under Ramon y Cajal postdoctoral fellowship (RYC-2013-14717).Peer ReviewedPostprint (author's final draft

    A 3.5 Gsymbol/lane Receiver Design for MIPI C-PHY Layer v2.0

    Get PDF
    Department of Electrical EngineeringSemiconductor process technologies are the backbone of information driven era, where one can have an access to immense amount of data on a daily basis. As an amount of information continually increases, demand for advanced technology nodes follows the similar trend by evolving down to 3 nm process in 2022. Need for more information directly correlates with a need for higher speed of communication between data canters and clients. Higher operating speed brings up requirement for high power and surgical precision into a play. This power and speed trade-off can be the limiting factor in many systems, and designing high speed system while maintaining low or moderate power consumption requires engineers to invent more elaborate schemes that employ the above trade-off in the most efficient way. Other crucial aspects such as noise, communication efficiency, budget and area are also parameters in power and speed trade-off function that should be taken into careful consideration. Therefore, bridge systems are being developed in an effort to deliver vast of amount information between two or more communicating system, meanwhile aiming to optimize the aforementioned parameters._x000D_ Recently, a great deal of researches has been conducted to implement interfaces that provides high throughput and performance over bandlimited communication mediums. Due to manufacturing cost, designed systems architecture should be standardized to allow cross-compatibility over various devices. One of the such industry standard interface systems that found use in smartphones, smart watches, smart meters, video game devices, etc., is Mobile Industry Processor Interface Display/Camera Serial Interface (MIPI DSI/CSI). MIPI DSI/CSI enables high performance, low power solution while ensuring interoperability across different vendors. _x000D_ This thesis presents design of front end at 7.98 Gb/s for C-PHY (MIPI DSI/CSI physical layer) serial interface in TSMC-28 nm HPC CMOS technology. High-speed front end consists of termination resistor (RT), continuous time linear equalizer (CTLE), high-speed receiver (HSRX), clock and data recovery (CDR) circuit, decoder (DEC) and 7x21 de-serializer (DESER). RT block employs parallel trimming technique to ensure operation across PVT corners. Active CTLE improves signal integrity and accommodates trimming option to allow operation with different channel lengths. In order to recover the clock embedded into signal according to the C-PHY specification, CDR block is designed. DEC decodes output signals from HSRX in a fashion consistent with C-PHY specifications. As a result, analog frond end achieves less than 0.2 pJ/but efficiency with 0.9 V supply voltage._x000D_ope

    High Frequency Signaling Analysis Of Inter-Chip Package Routing For Multi-Chip Package

    Get PDF
    Multi-Chip Package (MCP) is becoming a customary form of integration in many high performance and advanced electronic devices. The vast adoptions of this technology are mainly contributed by the advantages for instance lower power consumption, heterogeneous integration of multiple silicon process technologies and manufacturers, shorter time-to-market and lower costs. However, the high density inter-chip I/O routing within package will presents unique signaling challenges when coupled with high operating data rate. Tackling the right issue at early design stage is essential to avoid the pitfall of redesign. Thus, with the aim to establish the design guideline to enable high performance MCP channel, this research focuses on the signaling analysis of the inter-chip I/O package routing between silicon devices in MCP. In this study, signal quality and eye margin sensitivity were evaluated from 2.5 GHz up-to 7.5 GHz. The microwave effect is found dominating the transmission line component that resulted in signal quality deteriorations. Key limiting factors such as crosstalk coupling effects, signal reflections and frequency dependent losses that caused signal quality degradations were identified and categorized from 2.5 GHz to 7.5 GHz with channel length of 3 mm to 30 mm for future MCP design considerations. Moreover, various low power passive signaling enhancement techniques i.e. equalization and termination to mitigate the signal integrity challenges of the high speed on-package inter-chip channels has been analyzed
    corecore