2 research outputs found

    Continuous-discrete unscented Kalman filtering framework by MATLAB ODE solvers and square-root methods

    Full text link
    This paper addresses the problem of designing the {\it continuous-discrete} unscented Kalman filter (UKF) implementation methods. More precisely, the aim is to propose the MATLAB-based UKF algorithms for {\it accurate} and {\it robust} state estimation of stochastic dynamic systems. The accuracy of the {\it continuous-discrete} nonlinear filters heavily depends on how the implementation method manages the discretization error arisen at the filter prediction step. We suggest the elegant and accurate implementation framework for tracking the hidden states by utilizing the MATLAB built-in numerical integration schemes developed for solving ordinary differential equations (ODEs). The accuracy is boosted by the discretization error control involved in all MATLAB ODE solvers. This keeps the discretization error below the tolerance value provided by users, automatically. Meanwhile, the robustness of the UKF filtering methods is examined in terms of the stability to roundoff. In contrast to the pseudo-square-root UKF implementations established in engineering literature, which are based on the one-rank Cholesky updates, we derive the stable square-root methods by utilizing the JJ-orthogonal transformations for calculating the Cholesky square-root factors

    Kalman Filtering and its Application to On-Line State Estimation of a Once-Through Boiler

    Get PDF
    This thesis contributes to non-linear continuous-discrete Kalman filtering of multiplex systems through the development of two main ideas, namely, integration of the unscented transforms with linearly implicit methods and incorporation of simulation errors in the state estimation problem. The newly developed techniques are then applied to the technically relevant problem of state estimation on the main components of a utility boiler. State estimators in industrial systems are used as soft-sensors in monitoring and control applications as the most cost effective and practical alternative to telemetering all variables of interest. One such example is in utility boilers where reliable and real-time data characterising its behaviour is used to detect faults and optimise performance. With respect to the state-of-the-art, state estimators display limitations in real-time applications to large-scale systems. This motivates theoretical developments in state estimation as a first part in this thesis. These developments are aimed at producing more practical and efficient algorithms in non-linear continuous discrete Kalman filtering for stiff large-scale industrial systems. This is achieved using two novel ideas. The first is to exploit the similarities between the extended and unscented Kalman filter in order to estimate the Jacobian required for linearly implicit schemes, thereby tightly coupling state propagation and continuous-time simulation. The second is to account for numerical integration error by appending a stochastic local error model to the system's stochastic differential equation. This allows for coarser integration time steps in systems that are otherwise only suited to relatively small step sizes, making the filter more computationally efficient without lowering its potential to construct accurate estimates. The second part of this thesis uses these algorithms to demonstrate the feasibility of on-line state estimation on the main components of a once-through utility power boiler that require in excess of a hundred state variables to capture its behaviour with adequate fidelity. Two separate models of the boiler are developed, a MATLAB® and a Flownex® model, comprising the economiser, evaporators, reheaters, superheaters and furnace. The mathematical MATLAB® model is better suited to real-time execution and is used in the filter. The more sophisticated model is based on a commercial thermal-hydraulic simulation environment, Flownex® , and is used to validate the mathematical modelling philosophies and construct filter observation data. After validating the performance of the filter against ground-truth data provided by the Flownex® model, the filter is demonstrated on historical plant data to illustrate its utility
    corecore