106,203 research outputs found

    Security Measures Against Hackers

    Get PDF
    The twenty-first century covered us with an invisible net. Almost all of us have smartphones, computers, even glasses and watches with Internet access. On one hand it is very comfortable because we can buy, talk, play without leaving home or while waiting for a bus, but on the other hand such people as hackers can rob you or take under control your device for their own purposes via the Internet

    Count three for wear able computers

    Get PDF
    This paper is a postprint of a paper submitted to and accepted for publication in the Proceedings of the IEE Eurowearable 2003 Conference, and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at the IET Digital Library. A revised version of this paper was also published in Electronics Systems and Software, also subject to Institution of Engineering and Technology Copyright. The copy of record is also available at the IET Digital Library.A description of 'ubiquitous computer' is presented. Ubiquitous computers imply portable computers embedded into everyday objects, which would replace personal computers. Ubiquitous computers can be mapped into a three-tier scheme, differentiated by processor performance and flexibility of function. The power consumption of mobile devices is one of the most important design considerations. The size of a wearable system is often a design limitation

    Next steps in implementing Kaput's research programme

    Get PDF
    We explore some key constructs and research themes initiated by Jim Kaput, and attempt to illuminate them further with reference to our own research. These 'design principles' focus on the evolution of digital representations since the early nineties, and we attempt to take forward our collective understanding of the cognitive and cultural affordances they offer. There are two main organising ideas for the paper. The first centres around Kaput's notion of outsourcing of processing power, and explores the implications of this for mathematical learning. We argue that a key component for design is to create visible, transparent views of outsourcing, a transparency without which there may be as many pitfalls as opportunities for mathematical learning. The second organising idea is that of communication, a key notion for Kaput, and the importance of designing for communication in ways that recognise the mutual influence of tools for communication and for mathematical expression

    Supporting ethnographic studies of ubiquitous computing in the wild

    Get PDF
    Ethnography has become a staple feature of IT research over the last twenty years, shaping our understanding of the social character of computing systems and informing their design in a wide variety of settings. The emergence of ubiquitous computing raises new challenges for ethnography however, distributing interaction across a burgeoning array of small, mobile devices and online environments which exploit invisible sensing systems. Understanding interaction requires ethnographers to reconcile interactions that are, for example, distributed across devices on the street with online interactions in order to assemble coherent understandings of the social character and purchase of ubiquitous computing systems. We draw upon four recent studies to show how ethnographers are replaying system recordings of interaction alongside existing resources such as video recordings to do this and identify key challenges that need to be met to support ethnographic study of ubiquitous computing in the wild

    Ubiquitous computing: Anytime, anyplace, anywhere?

    Get PDF
    Computers are ubiquitous, in terms that they are everywhere, but does this mean the same as ubiquitous computing? Views are divided. The convergent device (one-does-all) view posits the computer as a tool through which anything, and indeed everything, can be done (Licklider & Taylor, 1968). The divergent device (many-do-all) view, by contrast, offers a world where microprocessors are embedded in everything and communicating with one another (Weiser, 1991). This debate is implicitly present in this issue, with examples of the convergent device in Crook & Barrowcliff's paper and in Gay et al's paper, and examples of the divergent devices in Thomas & Gellersen's paper and Baber's paper. I suspect both streams of technology are likely to co-exist
    corecore