225 research outputs found

    Rijndael Circuit Level Cryptanalysis

    Get PDF
    The Rijndael cipher was chosen as the Advanced Encryption Standard (AES) in August 1999. Its internal structure exhibits unusual properties such as a clean and simple algebraic description for the S-box. In this research, we construct a scalable family of ciphers which behave very much like the original Rijndael. This approach gives us the opportunity to use computational complexity theory. In the main result, we generate a candidate one-way function family from the scalable Rijndael family. We note that, although reduction to one-way functions is a common theme in the theory of public-key cryptography, it is rare to have such a defense of security in the private-key theatre. In this thesis a plan of attack is introduced at the circuit level whose aim is not break the cryptosystem in any practical way, but simply to break the very bold Rijndael security claim. To achieve this goal, we are led to a formal understanding of the Rijndael security claim, juxtaposing it with rigorous security treatments. Several of the questions that arise in this regard are as follows: ``Do invertible functions represented by circuits with very small numbers of gates have better than worst case implementations for their inverses?\u27 ``How many plaintext/ciphertext pairs are needed to uniquely determine the Rijndael key?\u2

    Can a Differential Attack Work for an Arbitrarily Large Number of Rounds?

    Get PDF
    Differential cryptanalysis is one of the oldest attacks on block ciphers. Can anything new be discovered on this topic? A related question is that of backdoors and hidden properties. There is substantial amount of research on how Boolean functions affect the security of ciphers, and comparatively, little research, on how block cipher wiring can be very special or abnormal. In this article we show a strong type of anomaly: where the complexity of a differential attack does not grow exponentially as the number of rounds increases. It will grow initially, and later will be lower bounded by a constant. At the end of the day the vulnerability is an ordinary single differential attack on the full state. It occurs due to the existence of a hidden polynomial invariant. We conjecture that this type of anomaly is not easily detectable if the attacker has limited resources

    Construction of a polynomial invariant annihilation attack of degree 7 for T-310

    Get PDF
    Cryptographic attacks are typically constructed by black-box methods and combinations of simpler properties, for example in [Generalised] Linear Cryptanalysis. In this article, we work with a more recent white-box algebraic-constructive methodology. Polynomial invariant attacks on a block cipher are constructed explicitly through the study of the space of Boolean polynomials which does not have a unique factorisation and solving the so-called Fundamental Equation (FE). Some recent invariant attacks are quite symmetric and exhibit some sort of clear structure, or work only when the Boolean function is degenerate. As a proof of concept, we construct an attack where a highly irregular product of seven polynomials is an invariant for any number of rounds for T-310 under certain conditions on the long term key and for any key and any IV. A key feature of our attack is that it works for any Boolean function which satisfies a specific annihilation property. We evaluate very precisely the probability that our attack works when the Boolean function is chosen uniformly at random

    C-DIFFERENTIALS AND GENERALIZED CRYPTOGRAPHIC PROPERTIES OF VECTORIAL BOOLEAN AND P-ARY FUNCTIONS

    Get PDF
    This dissertation investigates a newly defined cryptographic differential, called a c-differential, and its relevance to the nonlinear substitution boxes of modern symmetric block ciphers. We generalize the notions of perfect nonlinearity, bentness, and avalanche characteristics of vectorial Boolean and p-ary functions using the c-derivative and a new autocorrelation function, while capturing the original definitions as special cases (i.e., when c=1). We investigate the c-differential uniformity property of the inverse function over finite fields under several extended affine transformations. We demonstrate that c-differential properties do not hold in general across equivalence classes typically used in Boolean function analysis, and in some cases change significantly under slight perturbations. Thus, choosing certain affine equivalent functions that are easy to implement in hardware or software without checking their c-differential properties could potentially expose an encryption scheme to risk if a c-differential attack method is ever realized. We also extend the c-derivative and c-differential uniformity into higher order, investigate some of their properties, and analyze the behavior of the inverse function's second order c-differential uniformity. Finally, we analyze the substitution boxes of some recognizable ciphers along with certain extended affine equivalent variations and document their performance under c-differential uniformity.Commander, United States NavyApproved for public release. Distribution is unlimited

    Matrix Power S-box Analysis

    Get PDF
    * Work supported by the Lithuanian State Science and Studies Foundation.Construction of symmetric cipher S-box based on matrix power function and dependant on key is analyzed. The matrix consisting of plain data bit strings is combined with three round key matrices using arithmetical addition and exponent operations. The matrix power means the matrix powered by other matrix. This operation is linked with two sound one-way functions: the discrete logarithm problem and decomposition problem. The latter is used in the infinite non-commutative group based public key cryptosystems. The mathematical description of proposed S-box in its nature possesses a good “confusion and diffusion” properties and contains variables “of a complex type” as was formulated by Shannon. Core properties of matrix power operation are formulated and proven. Some preliminary cryptographic characteristics of constructed S-box are calculated
    corecore