11,571 research outputs found

    A fast multi-resolution lattice Green's function method for elliptic difference equations

    Get PDF
    We propose a mesh refinement technique for solving elliptic difference equations on unbounded domains based on the fast lattice Green's function (FLGF) method. The FLGF method exploits the regularity of the Cartesian mesh and uses the fast multipole method in conjunction with fast Fourier transforms to yield linear complexity and decrease time-to-solution. We extend this method to a multi-resolution scheme and allow for locally refined Cartesian blocks embedded in the computational domain. Appropriately chosen interpolation and regularization operators retain consistency between the discrete Laplace operator and its inverse on the unbounded domain. Second-order accuracy and linear complexity are maintained, while significantly reducing the number of degrees of freedom and hence the computational cost

    FM-BEM and topological derivative applied to inverse acoustic scattering

    No full text
    This study is set in the framework of inverse scattering of scalar (e.g. acoustic) waves. A qualitative probing technique based on the distribution of topological sensitivity of the cost functional associated with the inverse problem with respect to the nucleation of an infinitesimally-small hard obstacle is formulated. The sensitivity distribution is expressed as a bilinear formula involving the free field and an adjoint field associated with the cost function. These fields are computed by means of a boundary element formulation accelerated by the Fast Multipole method. A computationally fast approach for performing a global preliminary search based on the available overspecified boundary data is thus defined. Its usefulness is demonstrated through results of numerical experiments on the qualitative identification of a hard obstacle in a bounded acoustic domain, for configurations featuring O(10^{5}) nodal unknowns and O(10^{6}) sampling points

    Topological sensitivity and FMM-accelerated BEM applied to 3D acoustic inverse scattering

    No full text
    This study is set in the framework of inverse scattering of scalar (e.g. acoustic) waves. A qualitative probing technique based on the distribution of topological sensitivity of the cost functional associated with the inverse problem with respect to the nucleation of an infinitesimally-small hard obstacle is formulated. The sensitivity distribution is expressed as a bilinear formula involving the free field and an adjoint field associated with the cost function. These fields are computed by means of a boundary element formulation accelerated by the Fast Multipole method. A computationally fast approach for performing a global preliminary search based on the available overspecified boundary data is thus defined. Its usefulness is demonstrated through results of numerical experiments on the qualitative identification of a hard obstacle in a bounded acoustic domain, for configurations featuring O(105)O(10^{5}) nodal unknowns and O(10^{6})$ sampling points

    Yet another fast multipole method without multipoles --- Pseudo-particle multipole method

    Full text link
    In this paper we describe a new approach to implement the O(N) fast multipole method and O(NlogN)O(N\log N) tree method, which uses pseudoparticles to express the potential field. The new method is similar to Anderson's method, which uses the values of potential at discrete points to represent the potential field. However, for the same expansion order the new method is more accurate and computationally efficient.Comment: 14 pages, 2 figure

    Fast Multipole Method for the Symmetric Boundary Element Method in MEG/EEG

    Get PDF
    The accurate solution of the forward electrostatic problem is an essential first step before solving the inverse problem of magneto- and electro-encephalography (MEG/EEG). The symmetric Galerkin boundary element method is accurate but is difficule to use for very large problems because of its computational complexity and memory requirements. We describe a fast multipole-based acceleration for the symmetric BEM with complexity. It creates a hierarchical structure of the elements and approximates far interactions using spherical harmonics expansions. The accelerated method is shown to be as accurate as the direct method, yet for large problems it is both faster and more economical in terms of memory consumption
    corecore