29,540 research outputs found

    Kirjallisuuskatsaus testiautomaatiomalleista ketterässä ohjelmistotestauksessa

    Get PDF
    Test automation is considered to be a crucial part of a modern Agile development team. Agile software testing methods and development practices, such as Test Driven Development (TDD) or Behavior Driven Development (BDD), continuously assure software quality during development time, from project start to finish. Agile software development methods require Agile testing practices for its implementation. Software quality is built-in and delivering functional and stable software continuously is a key business capability. Automated system and acceptance tests are considered as a routine part of the Continuous Integration (CI) and Continuous Delivery (CD) pipeline. The objective of the research was to study, what test automation models, Agile practices and tools are found in Agile test automation literature and what kind of generic Agile test automation model can be synthesized from this literature. The objective was completed by conducting a systematic literature review of test automation models. The initial search included fifty scientific articles, from which ten models were selected for further analysis. The selected articles and their models were modelled using prescriptive modelling. The tools and Agile practices mentioned in the articles were recorded and categorized. Each model was also categorized according to its domain of application. Using the collected data, a synthesized generic model for Agile test automation model was created. Test automation models proved difficult to evaluate as the models were vastly different from each other in their description, depth of detail, utility, environment, scope and domain of application. A generic Agile test automation model would be characterized with agent, activity, artefact and event elements. It would have a functional information perspective and would be formally presented in text and graphic form. Continuous Integration was identified as the most popular Agile development method and Scrum as the most popular Agile management practice. Continuous Integration was also identified as the most popular tool category

    Agile Requirements Engineering: A systematic literature review

    Get PDF
    Nowadays, Agile Software Development (ASD) is used to cope with increasing complexity in system development. Hybrid development models, with the integration of User-Centered Design (UCD), are applied with the aim to deliver competitive products with a suitable User Experience (UX). Therefore, stakeholder and user involvement during Requirements Engineering (RE) are essential in order to establish a collaborative environment with constant feedback loops. The aim of this study is to capture the current state of the art of the literature related to Agile RE with focus on stakeholder and user involvement. In particular, we investigate what approaches exist to involve stakeholder in the process, which methodologies are commonly used to present the user perspective and how requirements management is been carried out. We conduct a Systematic Literature Review (SLR) with an extensive quality assessment of the included studies. We identified 27 relevant papers. After analyzing them in detail, we derive deep insights to the following aspects of Agile RE: stakeholder and user involvement, data gathering, user perspective, integrated methodologies, shared understanding, artifacts, documentation and Non-Functional Requirements (NFR). Agile RE is a complex research field with cross-functional influences. This study will contribute to the software development body of knowledge by assessing the involvement of stakeholder and user in Agile RE, providing methodologies that make ASD more human-centric and giving an overview of requirements management in ASD.Ministerio de Economía y Competitividad TIN2013-46928-C3-3-RMinisterio de Economía y Competitividad TIN2015-71938-RED

    Identifying Agile Requirements Engineering Patterns in Industry

    Get PDF
    Agile Software Development (ASD) is gaining in popularity in today´s business world. Industry is adopting agile methodologies both to accelerate value delivery and to enhance the ability to deal with changing requirements. However, ASD has a great impact on how Requirements Engineering (RE) is carried out in agile environments. The integration of Human-Centered Design (HCD) plays an important role due to the focus on user and stakeholder involvement. To this end, we aim to introduce agile RE patterns as main objective of this paper. On the one hand, we will describe our pattern mining process based on empirical research in literature and industry. On the other hand, we will discuss our results and provide two examples of agile RE patterns. In sum, the pattern mining process identifies 41 agile RE patterns. The accumulated knowledge will be shared by means of a web application.Ministerio de Economía y Competitividad TIN2013-46928-C3-3-RMinisterio de Economía y Competitividad TIN2016-76956-C3-2-RMinisterio de Economía y Competitividad TIN2015-71938-RED

    Safety-Critical Systems and Agile Development: A Mapping Study

    Full text link
    In the last decades, agile methods had a huge impact on how software is developed. In many cases, this has led to significant benefits, such as quality and speed of software deliveries to customers. However, safety-critical systems have widely been dismissed from benefiting from agile methods. Products that include safety critical aspects are therefore faced with a situation in which the development of safety-critical parts can significantly limit the potential speed-up through agile methods, for the full product, but also in the non-safety critical parts. For such products, the ability to develop safety-critical software in an agile way will generate a competitive advantage. In order to enable future research in this important area, we present in this paper a mapping of the current state of practice based on {a mixed method approach}. Starting from a workshop with experts from six large Swedish product development companies we develop a lens for our analysis. We then present a systematic mapping study on safety-critical systems and agile development through this lens in order to map potential benefits, challenges, and solution candidates for guiding future research.Comment: Accepted at Euromicro Conf. on Software Engineering and Advanced Applications 2018, Prague, Czech Republi

    Enterprise Experience into the Integration of Human-Centered Design and Kanban

    Get PDF
    he integration of Human-Centered Design (HCD) and Agile Software Development (ASD) promises the development of competitive products comprising a good User Experience (UX). This study has investigated the integration of HCD and Kanban with the aim to gain industrial experiences in a real world context. A case study showed that requirements flow into the development process in a structured manner by adding a design board. To this end, the transparency concerning recurring requirements increased. We contribute to the body of knowledge of software development by providing practical insights into Human-Centered Agile Development (HCAD). On one hand, it is shown that the integration of HCD and Kanban leads to a product with a good UX and makes the development process more human-centered. On the other hand, we conclude that a cross-functional collaboration speeds up product development.Ministerio de Economía y Competitividad TIN2013-46928-C3-3-RMinisterio de Economía y Competitividad TIN2015-71938-RED

    Measuring Software Process: A Systematic Mapping Study

    Get PDF
    Context: Measurement is essential to reach predictable performance and high capability processes. It provides support for better understanding, evaluation, management, and control of the development process and project, as well as the resulting product. It also enables organizations to improve and predict its process’s performance, which places organizations in better positions to make appropriate decisions. Objective: This study aims to understand the measurement of the software development process, to identify studies, create a classification scheme based on the identified studies, and then to map such studies into the scheme to answer the research questions. Method: Systematic mapping is the selected research methodology for this study. Results: A total of 462 studies are included and classified into four topics with respect to their focus and into three groups based on the publishing date. Five abstractions and 64 attributes were identified, 25 methods/models and 17 contexts were distinguished. Conclusion: capability and performance were the most measured process attributes, while effort and performance were the most measured project attributes. Goal Question Metric and Capability Maturity Model Integration were the main methods and models used in the studies, whereas agile/lean development and small/medium-size enterprise were the most frequently identified research contexts.Ministerio de Economía y Competitividad TIN2013-46928-C3-3-RMinisterio de Economía y Competitividad TIN2016-76956-C3-2- RMinisterio de Economía y Competitividad TIN2015-71938-RED
    • …
    corecore