3,012 research outputs found

    From the Information Bottleneck to the Privacy Funnel

    Full text link
    We focus on the privacy-utility trade-off encountered by users who wish to disclose some information to an analyst, that is correlated with their private data, in the hope of receiving some utility. We rely on a general privacy statistical inference framework, under which data is transformed before it is disclosed, according to a probabilistic privacy mapping. We show that when the log-loss is introduced in this framework in both the privacy metric and the distortion metric, the privacy leakage and the utility constraint can be reduced to the mutual information between private data and disclosed data, and between non-private data and disclosed data respectively. We justify the relevance and generality of the privacy metric under the log-loss by proving that the inference threat under any bounded cost function can be upper-bounded by an explicit function of the mutual information between private data and disclosed data. We then show that the privacy-utility tradeoff under the log-loss can be cast as the non-convex Privacy Funnel optimization, and we leverage its connection to the Information Bottleneck, to provide a greedy algorithm that is locally optimal. We evaluate its performance on the US census dataset

    Minimum-Information LQG Control - Part I: Memoryless Controllers

    Full text link
    With the increased demand for power efficiency in feedback-control systems, communication is becoming a limiting factor, raising the need to trade off the external cost that they incur with the capacity of the controller's communication channels. With a proper design of the channels, this translates into a sequential rate-distortion problem, where we minimize the rate of information required for the controller's operation under a constraint on its external cost. Memoryless controllers are of particular interest both for the simplicity and frugality of their implementation and as a basis for studying more complex controllers. In this paper we present the optimality principle for memoryless linear controllers that utilize minimal information rates to achieve a guaranteed external-cost level. We also study the interesting and useful phenomenology of the optimal controller, such as the principled reduction of its order

    On the Information Bottleneck Problems: An Information Theoretic Perspective

    Get PDF
    International Zurich Seminar on Information and Communication (IZS), February 26 – 28, 202

    General self-motivation and strategy identification : Case studies based on Sokoban and Pac-Man

    Get PDF
    (c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.In this paper, we use empowerment, a recently introduced biologically inspired measure, to allow an AI player to assign utility values to potential future states within a previously unencountered game without requiring explicit specification of goal states. We further introduce strategic affinity, a method of grouping action sequences together to form "strategies," by examining the overlap in the sets of potential future states following each such action sequence. We also demonstrate an information-theoretic method of predicting future utility. Combining these methods, we extend empowerment to soft-horizon empowerment which enables the player to select a repertoire of action sequences that aim to maintain anticipated utility. We show how this method provides a proto-heuristic for nonterminal states prior to specifying concrete game goals, and propose it as a principled candidate model for "intuitive" strategy selection, in line with other recent work on "self-motivated agent behavior." We demonstrate that the technique, despite being generically defined independently of scenario, performs quite well in relatively disparate scenarios, such as a Sokoban-inspired box-pushing scenario and in a Pac-Man-inspired predator game, suggesting novel and principle-based candidate routes toward more general game-playing algorithms.Peer reviewedFinal Accepted Versio

    Lossy joint source-channel coding in the finite blocklength regime

    Get PDF
    This paper finds new tight finite-blocklength bounds for the best achievable lossy joint source-channel code rate, and demonstrates that joint source-channel code design brings considerable performance advantage over a separate one in the non-asymptotic regime. A joint source-channel code maps a block of kk source symbols onto a lengthn-n channel codeword, and the fidelity of reproduction at the receiver end is measured by the probability ϵ\epsilon that the distortion exceeds a given threshold dd. For memoryless sources and channels, it is demonstrated that the parameters of the best joint source-channel code must satisfy nCkR(d)nV+kV(d)Q(ϵ)nC - kR(d) \approx \sqrt{nV + k \mathcal V(d)} Q(\epsilon), where CC and VV are the channel capacity and channel dispersion, respectively; R(d)R(d) and V(d)\mathcal V(d) are the source rate-distortion and rate-dispersion functions; and QQ is the standard Gaussian complementary cdf. Symbol-by-symbol (uncoded) transmission is known to achieve the Shannon limit when the source and channel satisfy a certain probabilistic matching condition. In this paper we show that even when this condition is not satisfied, symbol-by-symbol transmission is, in some cases, the best known strategy in the non-asymptotic regime
    corecore