366 research outputs found

    Comparative exploration on bifurcation behavior for integer-order and fractional-order delayed BAM neural networks

    Get PDF
    In the present study, we deal with the stability and the onset of Hopf bifurcation of two type delayed BAM neural networks (integer-order case and fractional-order case). By virtue of the characteristic equation of the integer-order delayed BAM neural networks and regarding time delay as critical parameter, a novel delay-independent condition ensuring the stability and the onset of Hopf bifurcation for the involved integer-order delayed BAM neural networks is built. Taking advantage of Laplace transform, stability theory and Hopf bifurcation knowledge of fractional-order differential equations, a novel delay-independent criterion to maintain the stability and the appearance of Hopf bifurcation for the addressed fractional-order BAM neural networks is established. The investigation indicates the important role of time delay in controlling the stability and Hopf bifurcation of the both type delayed BAM neural networks. By adjusting the value of time delay, we can effectively amplify the stability region and postpone the time of onset of Hopf bifurcation for the fractional-order BAM neural networks. Matlab simulation results are clearly presented to sustain the correctness of analytical results. The derived fruits of this study provide an important theoretical basis in regulating networks

    The dynamics of a delayed generalized fractional-order biological networks with predation behavior and material cycle

    Get PDF
    In this paper, a delayed generalized fractional-order biological networks with predation behavior and material cycle is comprehensively discussed. Some criteria of stability and bifurcation for the present system is presented. Moreover some results of two delays are obtained. Finally, some numerical simulations are presented to support the analytical results

    Eligibility Traces and Plasticity on Behavioral Time Scales: Experimental Support of neoHebbian Three-Factor Learning Rules

    Full text link
    Most elementary behaviors such as moving the arm to grasp an object or walking into the next room to explore a museum evolve on the time scale of seconds; in contrast, neuronal action potentials occur on the time scale of a few milliseconds. Learning rules of the brain must therefore bridge the gap between these two different time scales. Modern theories of synaptic plasticity have postulated that the co-activation of pre- and postsynaptic neurons sets a flag at the synapse, called an eligibility trace, that leads to a weight change only if an additional factor is present while the flag is set. This third factor, signaling reward, punishment, surprise, or novelty, could be implemented by the phasic activity of neuromodulators or specific neuronal inputs signaling special events. While the theoretical framework has been developed over the last decades, experimental evidence in support of eligibility traces on the time scale of seconds has been collected only during the last few years. Here we review, in the context of three-factor rules of synaptic plasticity, four key experiments that support the role of synaptic eligibility traces in combination with a third factor as a biological implementation of neoHebbian three-factor learning rules
    • …
    corecore