276,157 research outputs found

    The relationship between IR and multimedia databases

    Get PDF
    Modern extensible database systems support multimedia data through ADTs. However, because of the problems with multimedia query formulation, this support is not sufficient.\ud \ud Multimedia querying requires an iterative search process involving many different representations of the objects in the database. The support that is needed is very similar to the processes in information retrieval.\ud \ud Based on this observation, we develop the miRRor architecture for multimedia query processing. We design a layered framework based on information retrieval techniques, to provide a usable query interface to the multimedia database.\ud \ud First, we introduce a concept layer to enable reasoning over low-level concepts in the database.\ud \ud Second, we add an evidential reasoning layer as an intermediate between the user and the concept layer.\ud \ud Third, we add the functionality to process the users' relevance feedback.\ud \ud We then adapt the inference network model from text retrieval to an evidential reasoning model for multimedia query processing.\ud \ud We conclude with an outline for implementation of miRRor on top of the Monet extensible database system

    Data Quality in Predictive Toxicology: Identification of Chemical Structures and Calculation of Chemical Descriptors

    Get PDF
    Every technique for toxicity prediction and for the detection of structure–activity relationships relies on the accurate estimation and representation of chemical and toxicologic properties. In this paper we discuss the potential sources of errors associated with the identification of compounds, the representation of their structures, and the calculation of chemical descriptors. It is based on a case study where machine learning techniques were applied to data from noncongeneric compounds and a complex toxicologic end point (carcinogenicity). We propose methods applicable to the routine quality control of large chemical datasets, but our main intention is to raise awareness about this topic and to open a discussion about quality assurance in predictive toxicology. The accuracy and reproducibility of toxicity data will be reported in another paper

    Language Transfer of Audio Word2Vec: Learning Audio Segment Representations without Target Language Data

    Full text link
    Audio Word2Vec offers vector representations of fixed dimensionality for variable-length audio segments using Sequence-to-sequence Autoencoder (SA). These vector representations are shown to describe the sequential phonetic structures of the audio segments to a good degree, with real world applications such as query-by-example Spoken Term Detection (STD). This paper examines the capability of language transfer of Audio Word2Vec. We train SA from one language (source language) and use it to extract the vector representation of the audio segments of another language (target language). We found that SA can still catch phonetic structure from the audio segments of the target language if the source and target languages are similar. In query-by-example STD, we obtain the vector representations from the SA learned from a large amount of source language data, and found them surpass the representations from naive encoder and SA directly learned from a small amount of target language data. The result shows that it is possible to learn Audio Word2Vec model from high-resource languages and use it on low-resource languages. This further expands the usability of Audio Word2Vec.Comment: arXiv admin note: text overlap with arXiv:1603.0098

    A web-based teaching/learning environment to support collaborative knowledge construction in design

    Get PDF
    A web-based application has been developed as part of a recently completed research which proposed a conceptual framework to collect, analyze and compare different design experiences and to construct structured representations of the emerging knowledge in digital architectural design. The paper introduces the theoretical and practical development of this application as a teaching/learning environment which has significantly contributed to the development and testing of the ideas developed throughout the research. Later in the paper, the application of BLIP in two experimental (design) workshops is reported and evaluated according to the extent to which the application facilitates generation, modification and utilization of design knowledge

    Semantic web technology for web-based teaching and learning: A roadmap

    Get PDF
    The World-Wide Web has become the predominant platform for computer-aided instruction. Contentorientation, access and interactive features have made the Web a successful technology. The Web, however, is still evolving. We expect in particular Semantic Web technology to substantially impact Web-based teaching and learning. In this paper, we examine the potential of this technology and how we expect it to influence content representation and the work of the instructor and the learner

    Mapping Big Data into Knowledge Space with Cognitive Cyber-Infrastructure

    Full text link
    Big data research has attracted great attention in science, technology, industry and society. It is developing with the evolving scientific paradigm, the fourth industrial revolution, and the transformational innovation of technologies. However, its nature and fundamental challenge have not been recognized, and its own methodology has not been formed. This paper explores and answers the following questions: What is big data? What are the basic methods for representing, managing and analyzing big data? What is the relationship between big data and knowledge? Can we find a mapping from big data into knowledge space? What kind of infrastructure is required to support not only big data management and analysis but also knowledge discovery, sharing and management? What is the relationship between big data and science paradigm? What is the nature and fundamental challenge of big data computing? A multi-dimensional perspective is presented toward a methodology of big data computing.Comment: 59 page

    A conceptual architecture for interactive educational multimedia

    Get PDF
    Learning is more than knowledge acquisition; it often involves the active participation of the learner in a variety of knowledge- and skills-based learning and training activities. Interactive multimedia technology can support the variety of interaction channels and languages required to facilitate interactive learning and teaching. A conceptual architecture for interactive educational multimedia can support the development of such multimedia systems. Such an architecture needs to embed multimedia technology into a coherent educational context. A framework based on an integrated interaction model is needed to capture learning and training activities in an online setting from an educational perspective, to describe them in the human-computer context, and to integrate them with mechanisms and principles of multimedia interaction
    corecore